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ABSTRACT

For the turbulent thermal convection between two ver-
tical plates, it is observed that the flow can generate large-
scale spiral structures. Basing on the DNS data, this type
of large-scale structures is studied in spectrum space and in
physical space. By FFT of fluctuant velocity and kinetic
energy, it is shown that the energy-intensive scale in the
flow are about 0.01 in nondimensional time scale and 1.4 in
nondimensional space scale, which are in accordance with
the observation of the structures described useing stream-
lines. Further, the instantaneous flow patterns and the time
evolution of such spiral structure is illustrated in the pa-
per. For the emergence of the spiral structures, The role
of helicity in the flow is to suppress the energy cascade of
turbulence, reducing the dissipation, and hence preserving
the topological structure of the large-scale spiral flow for a
significantly long time interval.

INTRODUCTION

The natural convection between two parallel plates can
be categorized, typically, in two types. One is the well-
known Rayleigh-Bénard convection in which the plates are
horizontal with the bottom plate having higher temperature
than the top. In this Rayleigh-Bénard convection the mean
temperature gradient is in the direction parallel and opposite
to the gravity force. The other is between two vertical plates,
which is studied here (Fig.1), with the mean temperature
gradient perpendicular to the gravity force in the horizontal
direction. In this study the former is referred to as the nat-
ural convection of the first kind while the latter is called the
natural convection of the second kind. Many of the existing
studies on the turbulent coherent structures have been as-
sociated with Rayleigh-Bénard convection. For instance, in
the "hard turbulence” regime at sufficiently high Rayleigh
numbers, Cortese and Balachandar (1993) investigated the
vortical nature of thermal plumes through numerical sim-
ulation. Their work revealed the existence of the up and
down motions of the thermal plumes associated with signifi-
cant vertical vorticity, of which the horizontal scale is nearly
an order of magnitude smaller than the depth of the con-
vection layer. As opposed to the mechanism of large-scale
instability, Cortese and Balachandar (1993) proposed that
the physical mechanism responsible for these differently scal-
ing structures is the interaction between buoyancy induced
vertical flow and shear associated with the large-scale hori-
zontal cellular motions which exist instantaneously near the
top and bottom boundaries.

However, only a few published works have been con-

tributed to the understanding of the coherent structures
in the natural convection of the second kind. Boudjemadi

Figure 1: Schematic of the thermal convection between two
vertical plates.

et al. (1997) and Phillips (1996) performed DNS stud-
ies on this flow at Rayleigh number Ra = 4.6 x 10% and
1.28 x 10%, respectively. The main focus there was on the
statistical mean flow behaviour rather than on the large-scale
coherent structures. Versteegh and Nieuwstadt (1999) inves-
tigated the same flow through DNS with a somewhat larger
computational domain. It was realized in that work that
better agreement with the experimental data of Dafa’alla
and Betts (1996) can be achieved with the larger com-
putational domain size. Using the DNS data, Versteegh
and Nieuwstadt(1997) also studied the coherent structures
present in the flow and argued that the most unstable flow
pattern in the transition regime could still be recognized in
the turbulent flow at a Rayleigh number in the range of
5.4 X 10° — 5.0 x 10%. In the present work, Versteegh and
Nieuwstadt’s case (1999) with Ra = 5.4 x 10° is further
scrutinized through DNS. It is observed that the large-scale
coherent spiral structures generally occur even at “soft tur-
bulence” with relatively lower Rayleigh number. The present
study attempts to highlight the characteristics of the spiral
structures in terms of flow visualization, helicity and spectral
analysis.

GOVERNING EQUATIONS AND COMPUTATIONAL
METHOD

The flow induced by the thermal convection can be de-
scribed by the well-known Boussinesq equations. In the
non-dimensional forms they are written as follows:

Bu;
ox;

=0 (1)
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where Ra = BgATh®/kv is the Rayleigh number, Pr = v/x
the Prandtl number, and h the spacing between the two
plates. The coefficients 8, v and & are the thermal expansion
coefficient, kinematic viscosity and thermal diffusion coeffi-
cient of the fluid respectively. The subscript indices i and j
(=1, 2, 3) in the above equations correspond to component
in z, y, z respectively. §;; is the Kronecker delta. As Pr is
set to constant, the only characteristic parameter is Ra. All
the variables in this paper are non-dimensional with h being
the length scale, k/h the velocity scale and h2/k the time
scale.

According to Ruth’s linear instability analysis
(Ruth,1979), the lowest critical Rayleigh number at
which the flow starts to lose stability is about 5710 when
Pr =0.71. In the present numerical simulation the Prandtl
number is taken as 0.71 and Ra = 5.4 x 10° . The flow
is therefore well above the instability threshold and has
become turbulent. Egs. (1)~(3) are solved numerically in a
computational domain of the size Ly X Ly X L, = 1 X7 X 2«
in the normal, spanwise and streamwise directions. For the
boundary conditions, the no-slip condition is applied to
the surfaces of the two vertical plates for velocity and the
isotherm condition for temperature. In the homogeneous
y and z directions, the flow is assumed periodic. A
cartesian grid system with the number of grid points
Nz x Ny x N, = 96 x 90 x 206 is adopted. In the y-
and z-direction the grid spacing is uniform, whereas in
the z-direction the grid spacing is non-uniform with the
minimum size near the wall and the maximum size near the
centerline.

From Kolmogorov hypothesis, it can be estimated that
the smallest length and time scales in the flow are respec-
tively 0.017 and 1 x 10~3. The numerical technique applied
here is a finite-volume scheme with second-order discretiza-
tion for both the non-linear advection and the viscous diffu-
sion terms. The time-stepping method is an implicit scheme
of second-order accuracy. It is considered that such an ac-
curacy is sufficient for the description of the large-scale flow
patterns. After a sufficiently long time of computation start-
ing from the initial condition, about 0.6 non-dimensional
time length, the flow reaches a statistically steady state.
The mean velocity and mean temperature distributions of
the flow are shown in Fig.2.

In the DNS of the present flow, Boudjemadi et al (1997)
and Versteegh and Nieuwstadt (1999) adopted very differ-
ent sizes of the computational domain. The latter authors
employed much larger computational domain than the for-
mer and find significant improvement in the results. The
present computational domain is only a quarter of the one
used by Versteegh and Nieuwstadt to save computational
resources but significantly larger than the one employed by
Boudjemadi et al. In order to validate whether the present
computational domain is sufficient, two-point correlation co-
efficients in streamwise and spanwise directions are plotted
infig.3. The results are obtained with about 1000 time steps,
i.e. 0.5 nondimensional time, at the normal position of C in
Fig.2 corresponding to the maximum mean velocity. It is
observed that, when streamwise and spanwise distances in-
crease, the two-point correlation coefficients of u, v and w
decrease rapidly. In fact, when the the two-point distance
is greater than 1.5, say, the velocity correlations are negligi-

Figure 2: Mean velocity and mean temperature distributions
of the thermal convection flow (Pr = 0.71,Ra = 5.4 x 10%).

ble. Thus, the computation domain employed here is large
enough to resolve large-scale structures in the flow.

CHARACTERISTICS IN FREQUENCY AND WAVE-
NUMBER SPACE

For the natural convection of the second kind, the char-
acteristics of the flow are strongly affected by the walls.
From the mean velocity profile shown in Fig.2 the flow
can be roughly devided in two parts: the wall flows at
z < 0.075 and z > 0.925 and the Couette flow in the region
0.075 < = < 0.925. Shown in Fig.2 are five points on the
mean-velocity profile at different normal positions from the
cold wall. Spectrum characteristics of the flow are analyzed
using the data of these five points. The distances to the
cold wall of these five points from A to E are respectively
yt =07, yt =2, yt = 94, y* = 18.2 and y* = 61.6,
where y* = w*y/v with u« = 87.5. At the positions of
point B near the cold wall and point E in the central region,
the power spectra of the fluctuating velocities of w’, v' and
w' are in frequency space (Fig.4). It is observed here that
near the wall the power spectra exhibit strong anisotropy
at all frequencies and the energy associated with the ver-
tical fluctuating velocity u' is much less than the spanwise
v’ and streamwise w' components. The streamwise veloc-
ity w’ has higher energy than v’ at both lower and higher
frequency regions. At E point in the center between the
two walls, there is a good collapse of power spectrum data
between v’ and w' over all the scales. In fact, the normal
component also comes close to the v’ and w’ spectral curves
at high frequencies indicating good turbulence isotropy at
small scales. But at the energy-containing large scales the
power spectrum of »' is significantly lower than those of v/
and w'. This contributes to the overall anisotropy between
u’ and v/, w’. This general anisotropy in the central zone is
one of the main reasons that the current turbulence models
have difficulties to resolve this type of flow.

The energy spectrum curves in spanwise and streamwise
wave number space for points A, B, C, D, E are plotted in
Fig.5. It is observed that turbulence is most energetic to-
wards the center of the flow and this is consistent with the
distribution of time average of the fluctuating kinetic energy
shown in Fig.6. The turbulent kinetic energy is denoted as
e = 0.5 < uiu} > in this paper. It is seen that e increases
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Figure 3: Statistically-averaged two-point correlation coeffi-
cients in streamwise and spanwise directions at the normal
position of C in Fig.2.

with the distance to the center of the flow. The energy
spectra at these five positions have similar shapes. When
ky,kz ~ 0.7, the energy spectra reach maximum values.
It may thus be conjectured that the characteristic length
scale of the large-scale structures is approximately 1.4h in
both the spanwise and streamwise directions. At larger wave
numbers, from 2 to 10 say, the flow is in the inertia sub-range
similar to what Komogorolv theory has described. Their
slopes in logarithmic coordinate are all approximately -5/3.
At the wave numbers larger than about 20, energy spectra
decrease much slower, there is even spurious increase in the
data at point D and E. The spectra is likely in the dissipa-
tion range, but another possible reason is that the limited
mesh number makes energy spectrum distorted.

"The time series of the fluctuating kinetic energy at points
B, D and E are transformed to frequency space with FFT.
The energy spectrum curves are plotted in Fig.7. It is seen
that the energy spectrum reaches maximum value at f=100
and the large time scales are in the range t;, = 0.01 — 0.1.
At larger frequencies, about from 400 to 4000, the flow is in
the inertia subrange with slopes in logarithmic coordinate
at approximately -5/3. The curves for points D and E come
very close indicating the flow structures in the Couette-flow
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Figure 4: Power spectrum in frequency space of v/, v/ and
w’ of B point(a) and E point(b).

region are similar. The energy spectrum very near the wall
(point B) is significantly lower than those at points D and
E especially at large scales. This is understood as the wall
inhibits large scale turbulent motions.

It is generally seen here that energy spectra of the
flow quantities consist typically two regions, the energy-
containing region and the inertia region. The characteristic
large time scales with high energy spectrum are between
0.01-0.1, and the large length scales in y and z directions is
around 1.4h. This is in accordance with the characteristics
of the large-scale structures described in the following text.
In the inertia sub-range, -5/3 law can be violated in the
near wall region due to strong anisotropy of the flow. Due
to the resolving power, the energy-dissipation region in the
present computation is not evident. Finer grid mesh may be
required.

FLOW PATTERNS AND LARGE-SCALE SPIRAL STRUC-
TURES

In the present study a major observation is the pres-
ence of spiral structures in the flow (Wang et al 2002). In
order to have an intuitive impression of the flow patterns,
Fig.8 shows some instantaneous streamlines passing through
the high-helicity regions near the walls. These flow struc-
tures are then examined with their projections on a series of
planes perpendicular to the z-axis (mean streamwise) and x-
axis (normal to the walls) respectively. For examples, Fig.9
and Fig.10 show such projections in which domains enclosed
with a dash-dotted square box correspond to the flow struc-
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Figure 5: Fluctuant kinetic energy spectrum in spanwise(a)
and streamwise(b) wave number space of A, B, C, D and E
with different wall distances respectively.

ture of Fig.8(a). It is seen in Fig.9 that the spiral structure
originates at the plane z = 0 near the cold wall. At the plane
z=0, which is the bottom cross-section of the computational
domain, a pair of spiral singularities exist, one being inside
the square box and the other outside. These two singularities
wind up to form an asymmetric counter-rotating vortex pair
at the plane z = 0.3. Meanwhile, at the plane z = 0.07 very
close to the cold wall, a singularity of skew divergent node in
the square box can be observed in Fig.10. This singularity
node is strongly characterized by the upward velocity com-
ponent in z-direction against the general downward motion
of the fluid outside the singularity region due to buoyancy
effect. The strong upward motion generates large shear rates
around the singularity node causing this node singularity to
develop to a spiral singularity which becomes evident at the
plane z = 0.2. Further away from the cold wall, i.e., at the
plane z = 0.4, a pair of asymmetric counter-rotating vor-
tices form with one of them inside the square box as shown
in Fig.10. Upwards in z-direction, as z = 0.3 ~ 1.2, the vor-
tex of the counter-rotating pair outside and below the square
box (see Fig.10) becomes weaker and weaker and disappears
eventually. As the spiral flow reaches a position near the hot
wall, the strength of the vortex highlighted in the square box
degenerates again to a divergent-node singularity (see Fig.10
for the plane z = 0.93) denoting a transverse velocity com-
ponent in z-direction. Fig.9 thus illustrates that the spiral
structure in Fig.8(a) stretches mainly upwardstilting from
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Figure 6: The distribution of average turbulent kinetic en-
ergy with the vertival coordinate z.
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Figure 7: Fluctuant kinetic energy spectrum in frequency
space of B, D and E points

the cold wall to the hot with an angle of about 21.2 degree.

The cause of the spiral structure from generation to dis-
appearance is interesting and important for the investigation
of its mechanism. The time evolution of the spiral structure
shown in Fig.8(b) is illustrated in Fig.11, where g is the
starting time for observation, At = 5 x 1075 is the non-
dimensional time increment in the DNS computation. The
procedure to find such a time series is first to identify a
mid-life structure shown in Fig.11(d) through searching the
field values with large relative helicity at a particular in-
stance. Then, the flow streamlines are plotted before and
after this time until the spiral streamlines disappear. This
figure thus illustrates that the lifetime of such a large-scale
spiral structure is about of the same order of the global time
scale defined by the characteristic length h and the friction
velocity ua ( u« = y/7w/p & 0.011, Ty = u(dW/dz) |wau
). The lifetime of the helical flow pattern is equivalent to
the time interval in which the flow preserves its topological
structure. It is seen that this time interval is at least two or-
ders of magnitude longer than that of small-scale turbulent
structure.

ROLE OF HELICITY IN PRESERVING THE SPIRAL
STRUCTURES

It has been suggested (Tsinober and Levich(1983), Mof-
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Figure 8: Isolated instantaneous spiral structures corre-
sponding to the high helicity regions near the plate (Pr =
0.71,Ra = 5.4 x 10%), which appear in different moments,
and the center points of the starting section of the struc-
tures are located respectively about at the coordinates of
(0.95, 1, 2.4), (0.8, 2.2, 0).

Figure 9: Projections of the flow pattern on the planes per-
pendicular to the z-axis. Domains enclosed with dash-dotted
squares correspond to the structure given in Fig.8(b).

fatt(1984)) that the fluctuations of helicity play an impor-
tant role in the non-linear dynamics of complex flows and is
likely directly related to coherent structures in turbulence.
Helicity (strictly speaking helicity density) H is defined as
the scalar product of the velocity and vorticity vectors, i.e.
H = @ .3, where & = ¢ x #, relative helicity is called h,
ie. h = H/(| @]l & |) = cosd , where is § the angle be-
tween the velocity and vorticity vectors. Both H and h are
pseudoscalar quantities since they change signs if the frame
of reference changes from a right-handed co-ordinate system

Figure 10: Projections of the flow pattern on the planes
perpendicular to the x-axis. Domains enclosed with dash-
dotted squares correspond to the structure given in Fig.8(b).
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Figure 11: Evolution of a spiral structure with time, At =
5 x 1075 is the time step normalized by h2?/k. (Pr =
0.71,Re = 5.4 x 105)

to a left-handed one, in other words, H and h are quantities
lacking parity-invariance. _

Helicity of the flow has an intrinsic property to suppress
dissipation. A simple explanation is as follows. The Boussi-
nesq equation (2) can be re-written in its vectorial form as

Bt " #x0=~vE+ D) +r v a4+ BT -To)és (4)

where €3 is the unit vector in the vertical z-direction. In
Eq.(4), the only nonlinear term that exchanges energy be-
tween different scales is the Lamb vector @ x &. This term

is related with the relative helicity by an identity
[axa|? 2
1 —1-h 5

GG ©

Thus, in a flow region with high helicity the amplitude of
the Lamb vector # X & is correspondingly low, and hence

_the energy exchange between different scales becomes less

significant. Generally speaking, in a high Reynolds number
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flow the viscous dissipation of energy-containing scales can
be negligible. The removal of the energy of these scales is
due mainly to nonlinear interaction and cascade behaviour.
This explains why a strong helical flow structure on a certain
scale can preserve its energy and survive much longer than
a non-helical one.

Furthermore, if the energy cascade is suppressed by the
effect of helicity, the viscous dissipation of the smallest scale
would also be reduced. Thus, a flow region with high he-
licity values is conjectured to correspond to that of low
dissipation. The relationship between the helicity and the
dissipation rate can be further elucidated by plotting the he-
licity directly against the dissipation rate as shown in Fig.12.
Fig.12(a) clearly shows that for the spiral flow indicated
in Fig.8(b), high helicity magnitudes are closely associated
with the low dissipation values. Fig.12(b) is a similar plot
but with the conditional averaging over 50 equally spaced
intervals in €'/e},,,. These plots confirm the conjecture
metioned above. The other structures are also analyzed in
similar ways, the same conclusion has also been drawn.
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Figure 12: (a) Dissipation rate and absolute value of relative
helicity in the instantaneous flow region same as fig.8(b);
(b) Conditional average of relative helicity conditioned upon
dissipation rate for all the computational points. Average of
absolute value of relative helicity for 50 divisions from 0 to
1 with the width of 0.02 is computed for the points whose ¢’
belong to those zones.

CONCLUSION
By means of studying the correlation coefficients in ho-

mogeneous directions, it is shown that the computation
domain is large enough for the study of the large scale
structures. Through FFT technique, flow characteristics
in frenquency and wave number space are analyzed. The
power spectra of u/, v/ and w’ at the different normal po-
sitions indicate that turbulence anisotropy in this type of
natural convection at Ra= 5.4 x 10° exists generally even
away from the wall at the center between the plates. But the
difference between the energy components in the two homo-
geneous directions is negligibly small. The energy spectrum
curves exhibit two typical regions, the energy-intensive and
the inertia regions. The dissipation region is eveident. The
characteristic large time scale with high energy spectrum
ranges from 0.01 to 0.1, and large length scale in y and 2
directions is around 1.4h.

It is observed that the turbulent flow induced by the
thermal convection between two differentially heated verti-
cal plates can generate large-scale spiral structures. The
instantaneous flow patterns and time evolution of this kind
of structures are plotted. The observed length scale and
lifetime of such spiral structures is in accordance with the
spectral results. The role of helicity in the flow is to suppress

_the energy cascade of turbulence, reducing the dissipation,

and hence preserving the topological structure of the large-
scale spiral flow for a significantly long time interval.
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