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ABSTRACT

Direct numerical simulation (DNS) of fully-developed turbulent
curved channel flows with heat transfer at various Prandtl numbers
has been performed using the finite difference method, where we
show how both curvature and Prandt] number affect velocity and ther-
mal fields. In a curved channel flow, turbulence energy is transported
from the concave wall side to the convex wall side by the action of
pairs of streamwise vortices generated in the center of a channel by
the curved effect. In a thermal field, however, temperature variance
decreases on the concave wall side and increases on the convex wall
side in the case of different wall temperature conditions. Moreover,
a profile of the mean temperature becomes more and more asymmet-
ric with increasing Prandtl numbers and curvature. The DNS for a
channel of various curvatures with different Prandtl number flows in-
dicates in detail the turbulent statistics and turbulent structures in both
the velocity and thermal fields.

INTRODUCTION

The objective of the present study is to investigate in detail the
heat-transfer phenomena at various Prandtl numbers in curved wall
shear flows using direct numerical simulation (DNS), and to eluci-
date the mechanism of these heat-transfer phenomena in these flows.
DNS study of Prandtl number effects has been performed by many
researchers (e.g., Kim and Moin, 1989; Kasagi and Ohtsubo, 1993;
Kawamura et al.,, 1998). Such effects are important for the under-
standing of transport phenomena in a various fluids. On the other
hand, knowledge of the curvature effects is essential to the investiga-
tion of turbulent transport phenomena the same as for the rotational
effects. It is well-known that a convex curved wall suppresses tur-
bulence, whereas a concave curved wall enhances turbulence. In the
previous study, we investigated how the thermal field is remarkably
infiuenced by a curvature effect in a curved channel flow with heat
transfer (Irikado, Ishibashi and Nagano, 2001). Peculiar phenom-
ena indicating an increase in temperature fluctuations at the convex
wall side and their decrease at the concave wall side in the ther-
mal field were observed in that study, i.e., the reverse phenomenon
was observed in comparison with velocity field. Few studies have
been conducted on the transport phenomenon in overlapping effects
of Prandtl number and wall curvature. Since these phenomena often
appear in a thermal field of fluid flow as in turbomachinery, under-
standing the mechanism of heat transfer in the fluid flow is essential
for greater machinery efficiency. Therefore, in order to explore in
detail the effects of Prandtl number in curved channel flows, we per-
formed a DNS for curved channel flows at various Prandtl numbers.

GOVERNING EQUATION AND NUMERICAL PROCEDURE

We consider a fully-developed turbulent curved channel flow with
different wall temperature conditions. The governingequations for an
incompressible channel flow with heat transfer can be described in the

following dimensionless forms:
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where equations (1)~(3) are nondimensionalized by the channel
width 24, the mean friction velocity u, and the difference in temper-
ature of walls ©5, — ©, and a temperature does not affect a velocity
field, i.e., temperature treated as a passive scalar.

In order to apply equations (1)~(3) to a curved channel flow as
shown in Fig. 1, the calculation method employed is the boundary-
fitted coordinate technique, in which the governing equations (1)~(3)
are convertedinto the following general curvilinear coordinate system
equations (Irikado er al., 2001):
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where U7 is the contravariant velocity component in &7 direction,
&5 = 1,2,3) is the generalized coordinate, the Reynolds number,
Re; = u,6/v, is defined as the mean friction velocity at both walls,
ur, the channel half width, &, and the Prandtl number is defined as
Pr=v/a.

The direct numerical simulation (DNS) based on the finite-
difference method is carried out under the conditions of the Reynolds
number of Re, = 150, three Prandt] numbers and two curvature pa-
rameters indicated in Table 1. The radii of curvatures measured at the
centerline, Rc, are chosen to be 796 and 406. Thus, the curvature
parameters 6/ Rc become 1/79 ~ 0.013 and 1/40 = 0.025. The
smaller curvature parameter is within the range described by Brad-
shaw (1973) for a mild curvature (§/ Rc ~ 0.01), while the other has
a strong curvature,

Figure 1: Computational domain and coordinate system
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Table 1: Computational conditions for curved channel

Re-

150

8/Re 0.013(1/79)

0.025 (1/40)

pr [o1]om |20

o1 | 071 | 20

Table 2: Computational methods

Grid Collocated grid
Coupling algorithm ’ Fractional step method
Time conductive term Crank-Nicolson method
advancement | other terms Adams-Bashforth method

Spatial scheme

2nd-order central difference

Concave side

Convex side

© : Plane chanmel

L 1 i
0 1 y/6 2

Figure 4: Profiles of Reynolds shear stress
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64 x 64 X 96
85 x 26 x 44

Grid points (€1 x £2 x £3)

Computational volume

For the discretization of equations, the 2nd-order central finite-
difference is used in space, the 2nd-order Adams-Bashforth method
in time, and the 2nd-order Crank-Nicolson method is adopted for the
conductivity term in the energy equation for the stability of calcula-
tion in thermal fields. In order to couple the continuity equation with
a momentum equation, the fractional-step method (Kim and Moin,
1985) is adopted. The numerical scheme used in this study is vali-
dated in comparison with the DNS (Moser and Moin, 1987), which
employs the spectral method. The computational methods including
grid points and the computational domain are summarized in Table 2.
The boundary conditions include non-slip conditions for the velocity
field and different constant temperature for the thermal field on the
walls, and periodic conditions in the streamwise and spanwise direc-
tions.
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Figure 2: Profiles of mean velocity
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Figure 3: Profiles of mean velocity in wall coordinate
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Figure 5: Profiles of turbulent kinetic energy

Convex side Concave side

— ¢ §/Rc=0.013

—— : §/Rc=0.013
: §/Re=0.025
: Plane channel

08 L . v
0 1 y / ) 2
(©)
Figure 6: Profiles of Reynolds stress component: (a) streamwise, (b)
wall-normal, (¢) spanwise
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RESULTS AND DISCUSSION

In the resuits indicated below, a superscript ( )* denotes nondi-
mensionalized by the mean friction velocity and the mean friction
temperature, and ( )t denotes nondimensionalized by the local fric-
tion velocity and the local friction temperature at each of the walls.

Turbulent Statistics in Velocity Field of Curved Channel
Flows

The results of the DNS in the velocity field are shown in
Figs. 2~6. The well-known asymmetric profiles of mean velocity
are reproduced in the result of the DNS as shown in Fig. 2, and the
profiles of mean velocity normalized by a local friction velocity are
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displayed in Fig. 3 (Irikado er al,, 2001). The results of DNS for
plane channel flow (Nagano and Hattori, 2003) are also included in
these figures. Although the mean velocities U+ on both sides are in
agreement with the DNS of plane channel flow in the near-wall re-
gion, U7 on the convex wall side deviates from the standard log-low
profile in the log-low region (y* > 20). On the concave side, mean
velocities 't of both curvature cases maintain the standard log-low
atyt < 50. As shown in Figs. 4 and 5, the enhanced Reynolds shear
stress and turbulence energy at the concave wall side and the sup-
pression of Reynolds shear stress and turbulence energy at the convex
wall side are observed with an increase in the curvature parameter.
Figure 6 shows the Reynolds stress components in the curved chan-
nel flow, and these components are similarly enhanced on the concave
wall side. In particular, the wall-normal Reynolds stress component
increases in the center region of the curved channel as the curvature
parameter increases. Since the curvature yields a large-scale motion
toward the convex side wall, the wall-normal Reynolds stress com-
ponent is greatly influenced by this motion. The tendency of these
phenomena is similar to that of rotating channel flow (Nagano and
Hattori, 2003).
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Figure 11: Budgets of temperature variance near the wall on the con-
vex wall side: (a) Pr = 2.0, (b) Pr = 0.71, (¢c) Pr = 0.1

Effects of Prandtl Numbers in Curved Channel Flows

Figures 7 and 8 show the mean temperature profiles at various
Prandt] numbers. In thermal fields, the asymmetric profiles of mean
temperature also are observed at various Prandtl numbers. Since
the effect of curvature enhances a scalar transport from the concave
wall side to the convex wall side, a profile of the mean temper-
ature is distorted in the region of the channel center as shown in
Figs. 7(a) and (b). The tendency of this phenomenon becomes more
pronouncedin the higher Prandtl number flow and in the stronger cur-
vature. Therefore, in the log-low region of the strong curvature flow
(6/Rc = 0.025), the difference between the mean temperature in
the locai wall coordinates, ©1, on the concave and convex wall sides
is larger than the small curvature flow as indicated in Figs. 8 (a) and
(b). In a low-Prandtl number fluid, Pr = 0.1, the mean temperature
profile reaches close to identical distribution in both curvature cases,
since thermal conduction dominates in this range of Prandtl number.
Conversely, the fluid motions greatly affect the thermal field in the
high Prandtl number fluid, Pr = 2.0. Thus, the asymmetrical distri-
butions of mean temperature result as seen from Figs. 7 and 8.

The distributions of turbulent heat-flux are shown in Figs. 9(a) and
(b). Since a decrease in turbulence occurs on the convex wall side, as
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Figure 12: Budgets of temperature variance near the wall on the con-
cave wall side: (a) Pr = 2.0, (b) Pr = 0.71,(c) Pr = 0.1
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Figure 14: Streamwise-averaged velocity vectors and contour sur-
faces of temperature fluctuation for 6/ Re = 0.013

shown in Figs. 4 and 5, the relevant turbulent heat-fluxes decrease
remarkably on the convex wall side. In the lowest Prandtl number
flows, with an increase in curvature the turbulent heat-flux affects the
distributions of mean temperature more and more greatly owing to the
enhancement of scalar transport by the curvature.

On the other hand, although a decrease in velocity fluctuation is
observed on the convex wall side, the characteristic phenomenon of
thermal field in this condition is an increase in temperature variance
as shown in Fig. 10. With an increase in Prandtl number, the temper-
ature variance increases on the convex wall side, since the region of
large gradient for mean temperature expands on the convex wall side
owing to an enhancement of heat transfer on the concave wall side as
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Figure 15: Streamwise-averaged velocity vectors and contour sur-
faces of temperature fluctuation for 6/ Rc = 0.025
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Figure 16: Profiles of wall-normal skewness factor
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indicated by Figs. 7 (a) and (b).

Next, we consider this phenomenon observing the budgets of the
transport equation for temperature variance, (9_2/ 2. Figure 11 shows
the budget of 0_2/ 2 on the convex wall side, and Fig. 12 on the con-
cave wall side. In the high Prandt]l number flow, the production term
contributes a gain of 0_2/ 2 in wider region with the expansion of large
gradient for mean temperature as the curvature becomes strong. The
activity of the turbulent diffusion is clearly observed near the wall on
this wall side in the strong curvature case as indicated in Fig. 11 (a).
Therefore, in high Prandtl number fluids, the temperature variance of
the strong curvature case increases more and more in the near-wall
region. In the lower Prandtl nimber flow of the strong curvature case,
the temperature variance increases slightly at the convex wall side due
to the turbulent diffusion. Consequently, enhancement of the tem-
perature variance is due not only to production by mean temperature
gradient but to the turbulent diffusion at the convex wall side, where
there is remarkable suppression of turbulence. On the other hand, the
budgets of 0_2/2 at the concave wall side are shown in Fig. 12. At the
concave wall side, it can be seen that these budgets of both curvature
cases are similar to the plane channel flow, in which the turbulent dif-
fusion remains very small in the case of lower Prandtl number flow
(Kawamura et al., 1998; Kasagi and Ohtsubo, 1993).

TURBULENT STRUCTURES IN CURVED CHANNEL FLOW
WITH HEAT TRANSFER

In this section, we show the visualized turbulent structures in
curved channel flow with heat transfer. The vorticity structure in the
velocity field of y—2 plane is shown in Fig. 13. To detect the vortic-
ity structure, a threshold value is imposed on the second invariance,
where the negative value of second invariance indicates the vortic-
ity structure (Kasagi et al., 1995; lida, Iwatsuki and Nagano, 2000).
In the mild curvature case (6/Re = 0.013), the vorticity structure
remains on both wall sides. However, it can be seen that with an in-
crease in the curvature, the vorticity structure vanishes at the convex
wall side as shown in Fig. 13 (b). The vorticity structure seems to
rise up into the center region of the curved channel, since the large-
scale motion develops from the concave wall side to the convex wall
side as indicated in Figs. 14 and 15. The same two figures show the
streamwise-averaged velocity vectors and the contour surfaces of the
fluctuating temperature. Since the large-scale motions yielded by the
wall curvature exist from the concave wall side to the convex wall
side, the vorticity structure moves together with these large-scale mo-
tions. In order to consider the direction of large-scale motion, the
skewness factor, S(v), of the wall-normal velocity fluctuation, v, is
indicated in Fig. 16. From the distributions of the skewness factor and
the turbulence intensity, v}, of the wall-normal velocity fluctuation
as shown in Figs. 16 and 6(b), the large-scale motion occurs from the
concave wall side across the center toward the convex wall side in
the channel. This is because the negative S(v) indicates the large-
amplitude negative fluctuating velocity in the wall-normal direction
near the center of the channel in comparison with the plane channel
flow. Especially, in the case of the strong curvature, the skewness fac-
tor is almost negative across the curved channel as shown in Fig. 16.

In view of the passive scalar, the low temperature fluids are carried
by large-scale motions similar to the vorticity structure. Thus, since
the large-scale motions conspicuously influence the temperature fluc-
tuations, the mean temperature gradient becomes large at the convex
wall side in cases of Pr = 0.71 and Pr = 2.0. However, since
the thermal conduction strongly affects the thermal field in the case
of Pr = 0.1 near the wall, the large-scale motions hardly influence
the thermal field near the convex wall.

CONCLUSIONS

We conducted a DNS of curved channel flows at various Prandtl

numbers and curvature parameters. The transport mechanism of ther-
mal turbulence quantities on the convex wall side, where the turbu-
lence suppression phenomenon occurred remarkably, was then eluci-
dated from the DNS results. Next, we observed the effects of Prandtl
number in curved channel flows using a DNS. The asymmetric turbu-
lent quantities appeared in the curved channel. The turbulent thermal
field was remarkably affected by the wall curvature and Prandt] num-
bers. Conversely, the temperature fluctuations were enhanced in the
convex wall side in comparison with the velocity fluctuations in the
higher Prandtl number fluid. The budget of temperature variance
served to enhance the temperature variance on the convex wall side,
where turbulent diffusion and production by mean temperature gra-
dient contribute to a gain in temperature variance. The production
was distributed over a wide region on the convex wall side with the
expansion of the mean temperature gradient in the higher Prandtl
number fluid. Also, in the vicinity of the wall on the convex wall
side, the turbulent diffusion contributed considerably to an increase
in a temperature variance in the strong curvature of all Prandtl num-
ber flows. Finally, the visualized turbulent structures were indicated
for the understanding of transport phenomena in the curved flow at
the various Prandtl numbers. The vorticity structures lifted by large-
scale motions were observedin both curvature cases, and the transport
of passive scalar by large scale motions from a concave wall side to
a convex wall side was also found. These transport phenomena oc-
curred due to the curvature effects, and the higher Prandtl number
fluid was influenced remarkably by large-scale motions.
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