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ABSTRACT

A very large-eddy simulation based on a small set, &, of
POD-modes of turbulent channel flow is performed in order
to generate turbulent inlet-boundary conditions for a DNS
of the same flow. On to the large-scale motion small-scale
random POD-modes, not included in the set S, are added
in order to impose some energy in the high wave-number
part of the spectrum. It is found that the normal Reynolds
stresses and the energy spectra attain the same level as in
fully developed channel flow approximately 5 channel heights
downstream the inlet.

INTRODUCTION

Restriction of the computational domain to places of in-
terest is essential to reduce simulation costs. The drawback
of smaller domains is that they require better boundary con-
ditions since the flow will have a shorter distance to develop.
Steady laminar inflow boundary conditions are rather sim-
ple to prescribe, but turbulent boundary conditions are a
completely different issue. It is generally not possible to let
the turbulence develop from a laminar state at the bound-
ary since this would require a large region, if not all, of
the computational domain. The incoming turbulence at the
boundary should have a correct mean value, fulfill the incom-
pressibility constraint, have proper one- and two-point corre-
lations and ultimately meet the momentum equation. This
can be achieved by employing periodic (Kim et al., 1987) or
quasi-periodic boundary conditions (Lygren and Andersson,
2001). Turbulence structures that leave the domain re-enter
at the opposite side. Periodic boundary conditions severely
limit the type of flow cases to be simulated. Statistical homo-
geneity, or at least statistical quasi-homogeneity, is needed
in the directions for which periodic boundary conditions are
used. This excludes most engineering flows in which the
object under study usually will disarrange homogeneity. A
way out of this is to perform a separate simulation (Man-
hart and Wengle, 1993) in order to produce fully developed
inflow boundary conditions. The disadvantage is of course
the cost of the extra simulation in which one is not inter-
ested. Our experience with channel flow simulations is that
the time needed to arrive at a fully developed turbulent flow
is comparable to the time needed to gather statistics. The
efforts spent on producing realistic boundary conditions also
prevent a wider application of LES for industrial problems.

The objective of this study is to investigate the possibil-
ity of producing inflow boundary conditions for DNS/LES
by doing a very-large-eddy simulation (VLES) and super-
impose random small-scale fluctuations on to the large-scale
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Figure 1: Sketch of the flow geometry with coordinate sys-
tem.

motion. The idea is that the large structures which make up
an overwhelming part of the turbulent energy also constitute
the dominant physics and should therefore be properly rep-
resented. If not, the mean flow will convect the structures far
downstream of the inlet before they behave in a physically
correct way. Random small-scales are added to have some
energy in the high wave-number part of the spectrum. These
low-energy structures are assumed to be of modest dynami-
cal significance, and because of their shorter time-scale they
will hopefully adjust themselves to give meaningful turbu-
lence shortly downstream the inlet.

FLOW GEOMETRY AND GOVERNING EQUATIONS

Plane channel flow is chosen as the test case for the gener-
ation of turbulent inlet-boundary conditions technique. The
geometry is very simple (see figure 1), minimising the num-
ber of parameters. While being homogeneous in the span-
wise and streamwise directions, the flow is strongly inho-
mogeneous in the wall-normal direction and holds the most
important mechanisms and characteristics of self-sustaining
turbulence.

The normalised Navier-Stokes equations describing the
flow are

du 1 o
3{+u~Vu = Vp+R*Vu (1)
Vu = 0 (2)

in which w = w’/ux, t = t'u./H, p = p'/(pu2), ¢ = ' /H
and the Reynolds number, R« = u«H/v. The prime indi-
cates dimensional quantities, u« is the friction velocity, H
the half-channel height and v the kinematic viscosity.

METHOD USED TO GENERATE INFLOW DATA

The inflow generation technique studied here is based on
the proper orthogonal decomposition (POD) method (Lum-
ley, 1967) and can be divided into five steps. The first step
is a DNS of turbulent plane channel flow (which is the flow
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we “cheaply” want to reproduce). For historical reasons the
Reynolds number based on friction velocity (R.) equal to
180 is selected. The second step is the POD of the same flow.
Then comes “the very large-eddy simulation” (VLES) based
on the POD-modes extracted in the previous step. The
fourth stage consists of superposition of small-scale random
motion not represented in the VLES on to the large-scale
motion. Finally, the generated velocity field consisting of
both random and deterministic motion is introduced on the
inlet-boundary of a plane channel to verify that this can be
a meaningful way of generating turbulent inflow boundary
conditions.

DNS of Plane Channel Flow at R,=180

The DNS is performed with the finite-volume code
MGLET in order to establish a database from which the
POD-modes can be extracted. The 4th-order compact
scheme is used for spatial discretization, while the second-
order explicit Adams-Bashforth scheme is used for time in-
tegration. The simulation box measures 47 H, 47H/3 and
2H in z—, y— and z—direction, respectively. The resolu-
tion is 128 x 128 x 128 grid-points. Equal spacing is used
in the two homogeneous directions. In the normal direction
the grid has a constant stretching of 2%. The first pressure
point is placed at zt = 0.7. The database consists of 110
complete velocity fields dumped every 0.5 large-eddy-turn-
over-time (= H/u.) after reaching statistical steady state.
The root-mean-square (rms) values of the Reynolds stresses
and the mean velocity coincide with the reference simulation
(Kim et al., 1987) (not shown here).

Proper Orthogonal Decomposition (POD)

Lumley (1967) proposed the proper orthogonal decompo-
sition as an unbiased and therefore appropriate method to
detect coherent structures in turbulent flows. These “struc-
tures” constitute a set of orthogonal basis functions which
are optimal in respect to representing the energy of the ve-
locity fields from which the POD-modes are derived. Other
very favourable qualities of the POD-modes are that they
fulfill the incompressibility constraint (Holmes et al., 1996)
and the same boundary conditions as the velocity field.

In homogeneous directions Lumley (1967) showed that
the POD-modes are the Fourier modes and in the case of
plane channel flow only the wall-normal expansion of the
POD-modes is a priori unknown. The eigenfunctions will
thus be of the form

‘p'gtn (:l!) = ¢gm (z)eZ‘lri(mz/Lm +ny/Ly) (3)

in which m and n are the number of periods in z— and
y—direction and ¢ is the vertical quantum number index-
ing various wall-normal expansions. ”The direct method”
(Sirovich, 1987) is used to extract the coherent structures
from the Fourier transform of the two-point correlation ten-
sor in z— and y—direction. The expansion of the POD-
modes in z—direction are the eigenfunctions of the integral
equation

1
[ e8] (2 8 = N (2) ()
in which
Lo .
Kijmn(2:2) = ?/ iogn (2, D8 (2 D) (5)
T

where 4;, mn(2,t) is the complex Fourier coefficient of wave-
number k, = 2rm/L, and k, = 27n/L, in z— and

Table 1: The 20 most energetic POD-modes of turbulent
plane channel flow, R, = 180.

Index m =n q Lambda d Energy fraction
1 0 0 1 5.27E402 1
2 1 2 1 1.50E-02 4 8.69E-03
3 1 2 2 1.44E-02 4 8.35E-03
4 1 3 1 143E-02 4 8.28E-03
5 1 4 1 1.39E-02 4 8.05E-03
6 0 2 1 275E-02 2 7.99E-03
7 1 5 1 1.33E-02 4 7.70E-03
8 1 4 2 1.31E-02 4 7.58E-03
9 1 5 2 127E-02 4 7.36E-03
10 0 3 1 247E-02 2 7.18E-03
11 0 4 1 236E-02 2 6.84E-03
12 1 3 2 113B-02 4 6.54E-03
13 0 2 2 215E-02 2 6.25E-03
14 0 3 2 2.12E-02 2 6.14E-03
15 0 4 2 207E-02 2 5.99E-03
16 0 1 1 203E-02 2 5.89E-03
17 1 6 1 101E-02 4 5.86E-03
18 0 5 1 198E-02 2 5.74E-03
19 0 1 2 191E-02 2 5.53E-03
20 1 6 2 952E-03 4 5.52E-03

y—direction of the velocity wu;(z,y,2,t). The eigenvalue
problem (4) has to be solved for every combination m,n > 0.
POD-modes corresponding to negative wave-numbers are
found from symmetries (Sirovich, 1987).

Now the velocity field can be expressed as

w(@,t) = ) ahn (e (@) (6)

mng

in which ¢%,(x) are the spatial basis functions and
ahn(t) = Jy u(z,t) - p(x)findz are the temporal coeffi-
cients. In the limit of an infinite period of integration in (5),
also the temporal coefficients will be orthogonal

1 *
f /T 0% alrdt = AL Sgr bk ™)

Simpson’s quadrature rule modified for stretched grid is
used to approximate the integral in equation (4). Simpson’s
method has an error estimate of order 4.

Results from the POD. Table 1 shows the 20 most ener-
getic modes, with corresponding X, degeneracy, d and energy
fraction of fluctuating energy. The energy in the quantum
number combination (m,n,q) is defined as the energy in
ns PLny @L_, and @ (the number of degenera-
cies). The first mode represents the mean velocity and holds
the major part of the total kinetic energy. The other modes
represent fluctuating velocities. The most energy-rich modes
represent elongated structures in streamwise direction.

Very Large-Eddy Simulation (VLES)

The VLES is carried out by performing a Galerkin pro-
jection of the Navier-Stokes equations on to the finite set
S = {p%n}, (myn,q) € Q of the eigenfunctions. (2 is the
set of selected quantum number combinations. The velocity
field is approximated as

u(@,t) M us = »_ ahn(B)eha (@), (Mg e (8)

mngq
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The velocity ug is inserted into the normalised Navier-
Stokes equations (1) and the inner-product with each basis
function ‘PZI in § is performed. The result is a system of
ordinary differential equations which approximate the time
evolution of the temporal coefficients, azl(t). ‘We follow the
work of Omurtag and Sirovich (1999) who derived the dy-
namical system

m aj, = Z“kzakﬂ" Z By tmn O @ —m 1—n + 99 0k0610

mnrs

9)
in which pf7, 871" and g? are coefficient matrixes (whose
explicit expressions are not given here) depending on the
eigenfunctions in §. POD-modes representing the mean
velocity (the flux modes {¢f,}) are included in the set &
leaving the system quadratic. Since the small-scale motion
is not represented, an eddy-viscosity is needed to account
for the effect of these on to the large-scale motion. Without
any eddy-viscosity the energy level in the large-scale fluctu-
ating modes will be too high and the mean velocity much
too low. As Omurtag and Sirovich (1999) we simply add
the eddy-viscosity as a constant, (e/R.) to the molecular
viscosity and e is tuned such that the bulk flow of the VLES
meets the bulk flow of the DNS. Note that the eddy-viscosity
is not added to the flux modes since this would imply that
the mean velocity gradient dU/dz # R. at the wall. The
boundary conditions for plane channel flow, i.e. periodicity
in z— and y—direction and no-slip condition on the walls,
make the fluctuating pressure completely cancel out in the
Galerkin projection. Only the predetermined mean-gradient
of the pressure survives and acts as a source of energy into
the flux modes {p{;}. Omurtag and Sirovich (1999) call
them “mother-modes” and the remaining POD-modes feed
on them.

The Simpson’s quadrature rule is used to approximate
the inner-product in the Galerkin projection and the system
of equations (9) is integrated forward in time using a 3rd-
order explicit Adams-Bashforth scheme. The derivatives of
the POD-modes in z—direction (needed for evaluation of the
coefficient matrixes) are found using a 4th-order compact
scheme.

Size of the computational domain. The inlet-plane of
the DNS simulation for which the inflow data are gener-
ated sets the domain length in y— and z—direction of the
VLES. Only the length in z—direction is a free variable. We
use the length L = L;/3 = 4rH/3 in order to keep the
number of degrees of freedom in this direction at a mini-
mum. The POD-modes were extracted from a DNS with
streamwise length L, = 47H. In the VLES we can only
include the POD-modes that are periodic at the length L,

{cpgm‘n}, m,n,q = 0,41,£2,... . The lengths in y—
and z—direction are the same as in the first DNS. A shorter
length in x—direction implies larger jumps between the dis-
crete wave-numbers in this direction. This again implies that
the energy level () of the POD-modes used in the VLES will
be larger than in the DNS from which they are derived (in
our case with a factor of about three). The temporal coef-
ficient af,n (t) will from now on correspond to the extracted
POD-mode 3, .

Results from the VLES. Figures 2 and 3 show results
from dynamical systems based on 4 different sets of POD-
modes. The sets are {cpgm)n} in which m = 0,+1,%£2, n =

(b)
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Figure 3: Mean velocity U. Legend as in figure 2

0,%1,...,£9 and ¢ = 1,..,Q. Q is either 2, 4, 8 or 16. For
the flux modes {9y}, Q is always equal to 32. It was found
advantageous (Omurtag and Sirovich, 1999) to have a rich
basis for the mean velocity. The rms-values of the normal
stresses and the shear-stress are shown in figure 2 together
with the DNS results. It is clear that the energy in the
fluctuating streamwise component converges quicker than
the two other components. The POD-modes are optimal
in representing the overall energy of the flow field. Since the
streamwise component contains considerably more energy
than the other two components, the POD procedure puts
its priority here. Figure 3 shows how the mean velocity, U,
compares with the DNS. The results improve with increasing

Q.
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Random Small-Scale Motion

The random small-scale motion is represented as “ran-
dom” POD-modes not included in the set S. At this stage
we have chosen simplicity prior to sophistication. The am-
plitudes of the corresponding temporal coefficients are gen-
erated by a random number generator with the distribution

2 22
eT, >0 (10)
2w

f(=@) =

ﬁ

In order to impose some correlation with previous time steps
we set
new 4 mold
" = (11)
2

in which z™®% is the random number generated at the
present time step. This reduces the second moment E(z?)
from 1 to ~ 0.76. The random amplitude of a,, is set

equal to x,/3)I The “zero streamwise wave-number”

3m.,n"
random amplitudes agn correspond to very large structures
in z—direction. We simply set the amplitude of these struc-
tures equal to zero.

The phases of temporal coefficients with nonzero stream-
wise wave-number behave as 6y + wt in which w =
—2mmUpy 1 /L in order to imitate the propagating behaviour
of these modes (Sirovich et al., 1991). The initial values 89
of the phases are set randomly.

The inflow velocity profiles are stored in a file which later
is read by the DNS code (MGLET). The time At, between
subsequent inflow profiles is equal to 0.01 and is larger than
the viscous time scale, (t7 = 1/R.). The time step of the
DNS is 0.001. In other words, we are not trying to repre-
sent the correct temporal behaviour of the small-scales at
the inlet-boundary. Because of their short time-scale, it is
believed that the small-scale turbulence soon will adjust to
the large-scale motions.

DNS WITH GENERATED INFLOW BOUNDARY CONDI-
TIONS

The domain size is 67 H, 4rH/3 and 2H, in z—, y— and
z—direction, respectively. The resolution is 256 x 96 x 128
grid-points in the three directions. The resolution is some-
what increased in z--direction and decreased in y—direction
in order to increase the efficiency of the multi-grid solver.
Periodic boundary conditions are used in the y—direction.
On the outflow-boundary a 3rd-order interpolation is used
for the velocities. The 4th-order compact scheme is used for
spatial discretization and the explicit second-order Adams-
Bashforth scheme is employed for time integration. A 4th-
order interpolation is used between succeeding velocity pro-
files at the inlet-boundary.

Two test cases are performed. The large-scale motion
is produced by the same VLES and is identical in the two
test cases. The set of modes used is S = {(p%m’n} in which
m=20, £1, £2, n = 0,...,29 and ¢ = 1,...,6. For m and
n =0, ¢g=1,..,32. The eddy-viscosity e = 1.50. In test
case 1 only the large-scale motion is introduced at the inflow
boundary while in test case 2 additional small-scale random
motion is superimposed. The random POD-modes consist of
the set ' = M\ M U S where M = {Lpgm,n} and m = 0,...,
+10, n =0,...,4£40 and ¢ = 1, ...,15.

Figure 4 shows the mean velocity, turbulence intensities
and turbulent shear-stress imposed at the inlet in test case
1 and 2. The mean velocity is the same in both cases.
For test case 2 the fluctuating energy in the streamwise
component coincides with the energy of the fully developed
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Figure 4: (left) Mean velocity, U (right) u-, v-, w-rms and
#w. — — — VLES, — VLES and random motion, Symbols:
DNS of fully developed channel flow.
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Figure 5: Mean velocity U at 4 different cross sections down-
stream. Legend as in figure 4.

DNS. The spanwise and wall-normal component are some-
what underestimated. The VLES adjusts itself to give the
same amount of turbulent shear-stress as the DNS. Since the
random POD-modes also contribute to the shear-stress, the
stress level has to increase beyond the level of the DNS for
test case 2.

Test Case 1 and 2

Figures 5 to 9 show how the mean velocities, turbulence
intensities and turbulent shear-stress develope after the in-
let for test case 1 and 2. The statistics are based on 300
samples which are averaged in the spanwise direction. The
time between each sample is 0.1H/u«. Figure 5 shows the
mean velocity. The VLES fails to predict the correct profile
in the buffer region where the velocity is overestimated. In
the channel centre the velocity is too low. The mean velocity
has a very long time-scale and the discrepancies at the inlet-
boundary are persistent and do not completely disappear in
the middle of the channel even at ¥ ~ 2500.

In figure 6 the evolution of u-rms is presented. For test
case 1 the u-rms is somewhat underestimated at inlet, but
soon reach the fully developed level and beyond. The reason
for this might be that the small-scale variation is not present
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Figure 6: u-rms at 4 different cross sections downstream.
- — — VLES , VLES and random motion, Symbols:
DNS of fully developed channel flow.

Figure 7: v-rms at 4 different cross sections downstream.
Legend as in figure 6

to provide sufficient dissipation of energy. For test case 2
this is not the case and the level does not exceed the DNS
except in the channel centre. The v-rms is shown in figure 7.
The energy level converges smoothly towards the reference
profile. Test case 2 converges faster as expected. The w-rms
in figure 8 shows similar behaviour as the v-rms.

The turbulent shear-stress in figure 9 behaves less sat-
isfactorily. The correlation seems to decay to some degree
after the inlet. The decay is more appearent in test case 1
than in test case 2. At z7 = 2500 the shear-stress profiles
are the same for test case 1 and 2, but has not completely
recovered within this length. The shear-stress profile is of
course connected to the mean velocity profile. The shear-
stress gradient is larger in the buffer region and smaller in

Figure 8: w-rms at 4 different cross sections downstream.
Legend as in figure 6
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Figure 9: Turbulent shear-stress at 4 different cross sections
downstream. Legend as in figure 6

the channel certre than for the fully developed DNS indi-
cating that the channel core is accelerating.

Figure 10 and figure 11 show the Fourier transform of
the one-dimensional spanwise correlations Ry and Ryw, re-
spectively. The correlations are averaged along lines placed
at 100 wall units from the wall and at 4 different locations
downstream. All three spectra (Ey, is not shown) behave
qualitatively in the same manner. In the first plane just af-
ter the inlet there is a sharp drop in the spectra for test case
1 corresponding to the maximum spanwise wave-number in
the VLES. The energy is not completely zero in the high
wave-number part of the spectrum as it theoretically should
be. A plausible explanation for this is the interpolation
of the POD-modes on to the staggered grid positions used
by the finite volume code. In test case 2 this part of the
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Figure 10: One-dimensional energy spectra, Eyy, at 4 dif-

ferent cross sections downstream the inlet: — — —; Test case
1, ——; Test case 2, Symbols; fully developed channel flow
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Figure 11: One-dimensional energy spectra, Eyq, at 4 differ-
ent cross-sections downstream the inlet. Legend as in figure
10

spectrum is generated randomly, but the energy level is un-
derestimated as only a subset of the total set of POD-modes
is randomly varied. Test case 2 spectra develop faster to-
wards the spectra of the fully developed flow than the spectra
of test case 1.

CONCLUDING REMARKS

This study suggest that turbulence produced by a low-
dimensional dynamical system based on POD-modes can be
appropriate as turbulent inlet-boundary conditions. It seems
advantageous to superimpose low energy random POD-
modes on to the large-scale motion produced by the VLES
in order to introduce some energy in the high wave-number

region and sooner initiate the correct level of dissipation.
For engineering problems it is suggested that for a Reynolds
number about 180 an entrance region of 1000 wall units
should be sufficient. At this point the turbulence will not
be far from fully developed, at least in terms of one-point
second-order statistics and energy spectra. If fully developed
turbulence is needed for rigorous scientific studies the pro-
posed procedure is unable to compete with the running of a
separate DNS with periodic boundary conditions, especially
since such a simulation enables use of the direct solver. The
inconvenience with the rather long time needed to arrive at
a fully developed stage from random and unphysical distur-
bances can be partially eliminated in combination with the
procedure suggested here since the same approach can be
used to produce “good” start-fields. The time needed for
the dynamical systems studied here to arrive at “fully de-
veloped” state is negligible.

It still remains to verify if the POD-modes from one
Reynolds number can be used as basis for a VLES at an-
other Reynolds number and how these dynamical systems
behave when the POD-modes are stretched to fit another
aspect ratio of the channel. These are important issues to
shed light upon in order to settle if this can be a method to
cheaply generate turbulent inlet velocities for a fairly general
plane channel flow.

ACKNOWLEDGEMENT

The first author was the recipient of a research fellowship
offered by the Research Council of Norway. We also ac-
knowledge The Research Council of Norway (Programme for
Supercomputing) for granting us necessary CPU time. The
MGLET code was generously made available by Prof. H.
Wengle (Universitit der Bundeswehr Miinchen) and Prof. R.
Friedrich (Technische Universitit Miinchen). Valuable dis-
cussions with Prof. E.M. Regnquist (Trondheim) are highly
appreciated.

REFERENCES

Holmes,P., Lumley J.L. and Berkooz G. (1996), " Turbu-
lence, Coherent Structures, Dynamical Systems and Sym-
metry”, Cambridge University Press, Cambridge

Kim J., Moin P. and Moser R. (1987), ”Turbulence
statistics in fully developed channel flow at low Reynolds
number”, J. Fluid Mech., Vol. 177, pp 133-166.

Lumley J.L. (1967), ”The structure of inhomogeneous
turbulence”, Atmospheric Turbulence and Wave Propaga-
tion A. M. Yaglom and V.I. Tatarski, ed., Nauka, Moscow

Lygren M. and Andersson H.I. (2001), *Turbulent flow
between a rotating and stationary disk”, J. Fluid Mech. Vol.
426, pp 297-326

Manhart M. and Wengle H. (1993) ” A spatiotemporal de-
composition of a fully inhomogeneous turbulent flow field”,
Theoret. Comput. Fluid Dynamics, Vol.5, pp 223-242

Omurtag A. and Sirovich L. (1999) ”On low-dimensional
modeling of channel turbulence”, Theoret. Comput. Fluid
Dynamics Vol.13, pp 115-127

Sirovich L. (1987) ”Turbulence and the dynamics of co-
herent structures, Parts i-iii”, Quarterly of Applied Mathe-
matics, Vol.45, pp 561-591

Sirovich L., Ball K.S. and Handler R.A. (1991) “Propa-
gating structures in wall-bounded turbulent flows” Theoret.
Comput. Fluid Dynamics Vol. 2, pp 307-317

—834—





