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ABSTRACT

A process for formation of a vortex tube along a vortex
sheet and its impact on turbulence generation is investigated
in the homogeneous isotropic turbulence. Tt is shown that a
vortex tube is generated along a flat sheet under compression
of the vorticity in the stretching direction. In place of the
compression and reduction of the vorticity in the stretch-
ing direction, the growth of the azimuthal vorticity takes
place, and the azimuthal vorticity gradually accumulates to
form the vortex tube. Then, the flat sheet folds around this
concentrated vortex tube, forming the spiral vortex sheet
emanating from the tube core. An intense generation of
turbulence takes place along the flat sheet during this sheet-
tube transformation process. The effect of viscoelasticity
on this sheet-tube transformation process is studied using
the approximate solution for the Oldroyd constitutive equa-
tion. It is shown that the transformation process is disrupted
by pulling the flat sheet back to the original flat shape,
and subsequently turbulence generation is attenuated. Sim-
ilar attenuation of occurrence of transformation process was
found when the compressibility was introduced into the flow,
but this attenuation was primarily attributed to the infiu-
ence of the pressure-dilatation term.

INTRODUCTION

Coherent structures may be divided roughly into two
groups: the vortex tubelike structure and the vortex sheet-
like structure. Although these two structures are not dis-
tinctively separable because a vortex tube is often formed
along a vortex layer during the rolling up of the layer, we
consider that tube and sheet structures would primarily con-
stitute the fundamental elements of coherent structures in
turbulent flows.

In previous studies, several measures were considered
for the classification of these turbulent structures, e.g., the
eigenvalues, 01,03 and o3, of the strain-rate tensor, S;; =
(Bui/0z; + Buj/Bx;)/2. These eigenvalues are convention-
ally ordered such that o > 02 > 03. The eigenvectors cor-
responding to eigenvalues, o;, are denoted as e; (i=1,2,3).
In the present study, the eigenvalues o; (i = 1,2,3) were
reordered so that the eigenvalue, the eigenvector of which is
maximally aligned with the vorticity vector, w, is chosen as
0z, the largest remaining eigenvalue, as 0+, and the smallest
one, as 0. The corresponding eigenvectors for eigenvalues,
0z2,04,0-, were denoted as e, et,e_, respectively. This
reordering was carried out to eliminate the crossover of the
eigenvalues (Andreotti 1997; Horiuti 2001).

The vortex tube structures are commonly identified as
the region with a positive second-order invariant of the ve-

locity gradient tensor (Hunt et al. 1988)
1
Q= =5 (SinSks + Qur i), 1)

where (2;; is the vorticity tensor, (8u;/8z; — du;/dx;)/2.
Jeong & Hussain (1995) proposed a new identification
method for the vortex tube, in which the eigenvalues of the
symmetric tensor, S;; Skj+QixQj, were utilized, where the
eigenvalues were denoted as \; (1 = 1,2,3), ordered such
that Ay > Az > X3. The vortex core was defined as the
region with Az < 0.

The entire turbulent field can be decomposed based on
the magnitudes of the strain rate and the vorticity. The
structure of a region in which strain rate is dominant is
similar to that of a cylindrical sheet around the core of a
Burgers’ vortex tube model (Batchelor 1967) (curved sheet),
and a vorticity-dominated region is similar to a core region
of a Burgers’ vortex tube model (tube core), and the region
in which the magnitudes of vorticity and strain rate are com-
parable and large is similar to a Burgers’ vortex layer model
(flat sheet). It was shown in Horiuti (2001) that the curved
sheet can be effectively identified by imposing the condition
on the two reordered eigenvalues, Ay, as Ay > A2 >0,
while the flat sheet can be identified as Ay > 0 > A_, and
the tube core as 0 > Ay > A_. Although the flat sheet can
be identified using the isosurfaces of the A_ eigenvalue with
negative values, when this eigenvalue was used, the tube core
as well as the flat sheet were identified. In Horiuti (2003a),
it was shown that the magnitude of the eigenvalue for the
tensor, —(Sik; + ik i), [—(SikQj + Sjxi)]+ is very
large in the vicinity of the centre of the vortex sheet similar
to Burgers’ vortex layer model, i.e., the flat sheet. Thus, for
identifying the flat sheet by isolating it from the tube core,
the isosurfaces for the eigenvalue, [—(SikQ%; + Sju%:i)]+,
performs better than those of A_.

This identification method for the flat sheet region was
used in Horiuti (2003 b) to reveal the mechanism of a pro-
cess for formation of a vortex tube along a flat sheet. Direct
numerical simulation (DNS) data for incompressible homo-
geneous isotropic turbulence was utilized. Consistency of
the process obtained using the visualization of the time evo-
lution of the structures with the development in time of
the variables representing the structures estimated using the
analytical solutions for these variables was presented. In ad-
dition, it was shown that intense generation of turbulence
takes place associated with this sheet-tube transformation
process. It is well known that the turbulence generation
is markedly suppressed in the polymer diluted fluid due to
its viscoelastic effect (Oldroyd 1950). It is also known that
the generation of vorticity is significantly reduced when the
compressible effect is introduced into the flow. We speculate
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that by annihilating the occurrence of this transformation
process, the generation of turbulence may be reduced. The
purpose of this study is to investigate the effect of viscoelas-
ticity and compressibility on the sheet-tube transformation
process.

A SHEET-TUBE TRANSFORMATION PROCESS

A process derived using DNS data

We have utilized the DNS data for incompressible decay-
ing homogeneous isotropic turbulence, which were generated
with 256, 256 and 256 grid points, respectively, in the z,y
and z directions. Periodic boundary conditions were im-
posed in the three directions. The size of the computational
domain was 27 in each direction, the viscosity v = 0.00014,
and the time interval, At, was set equal to 0.0005. For de-
tails of the DNS data, see Horiuti (2001). Assessment was
done using the data at the instant when the Reynolds num-
ber based on the Taylor microscale, Ry & 88.

Figure 1 shows the isosurfaces for the second-order invari-
ant, Q, and the eigenvalue of the —(S;1%; + S;1%;) term,
[~ (SixQs; + Sijki)]+, obtained from DNS at ¢t = 1.75. It
can be seen in fig. 1 that, the flat sheet structure, which were
identified using the eigenvalue, [—(S;kS%k; + Sj% Qi)+, and
drawn using the white meshes, is formed. As can be seen
in 2, which shows the isosurfaces at a later stage (t = 1.8),
the isosurface of Q, which were drawn in the black color,
concentrates at certain location along the flat sheet. At
this location, compression of the vorticity in the stretching
(z—)direction takes place.

The time evolution of this flat sheet during the dura-
tion of time between t = 1.850 and t = 1.925 is shown in
the Newtonian case of fig. 6 (see the bottom page). The
azimuthal vorticity gradually accumulate to form the vor-
tex tube along the flat sheet. Then, the flat sheet folds
around this concentrated vortex tube, forming the spiral
vortex sheet emanating from the tube core. This sheet-
tube transformation process is different from the focusing of
vorticity considered by Neu (1984), in which the assumed di-
rection of vorticity for the tube was always the z—direction,
and the vortex tube structure shown in fig. 6 is different
from that of a Burgers’ vortex tube model. It should be
noted that an energy cascade took place during this trans-
formation process, and an intense generation of turbulence
occurred along the flat sheet (Horiuti 2001).

Consistency with analytical eigenvalue solutions

To examine the consistency of the sheet-tube transforma-
tion process which was obtained using the DNS data with
the analytical estimate of the time evolution of the variables
which represent this process, we derived the governing equa-
tions for the strain-rate eigenvalues, and the vorticities.

The governing equations for the eigenvalues, o, o4, on
the basis of the principal strain eigenvectors, e,e—,e;, can
be derived as follows (Nomura & Post 1998).

D 1 ~

EO’: =—a,2+2(w_2',+w3) _H121 (2)
—04 = —o% + -]: (w2 +w2) - INI++, (3)
Dt g\ T

where I1;; is the pressure Hessian (= 62p/8a;/8z;), and
II;; is the pressure Hessian on the basis of the principal
strain eigenvectors, ET(I'L;]-)E. The matrices, E and ET, are

Figure 1: Isosurfaces of the [—(S;xS; + S;kSki)]+ eigen-
value (drawn using the white meshes), and @ (drawn using
the black color), obtained from DNS at ¢t = 1.75.

Figure 2: Isosurfaces of the sheet (white mesh) and tube
(black), obtained from DNS at ¢ = 1.8.

orthogonal matrices whose rows and columns, respectively,
areey,e_,e.. wi,w~,w, are the vorticity components pro-
jected onto the basis of the principal strain eigenvectors,
W-e4,w: e_,w e, respectively.

On the flat sheet, the initial strain state is o, > 0, 02 >
o+, and the vorticity state is w2> wi > w?. Thus, ggaz <
0 due to a large negative value of —o2, the strain state,
oz > 0, tends to be transformed into the state, 0. < 0, with
lapse of time. Via the continuity equation, the strain state
becomes o+ > 0 > a,. This growth of the eigenvalue, o,
can be also derived using Eq. (3) since the magnitude of the
w? term in the right hand side of Eq. (3) is large.

The governing equation for the vorticities, wz, w4, on the
same basis can be derived as follows.

1 wowg =
D (lwg) S JE L (4)
Dt \4 40, -0y
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Due to occurrence of compression in the z—direction (0. <
0), the magnitude of w? decreases, while that of the az-
imuthal vorticity, wi, increases in turn since o4 > 0.
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Figure 3: PDF for the Uzwf term. Newtonian is from the
Newtonian case, and Viscoelastic is from the viscoelastic
case.
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Figure 4: PDF for the a+w3_ term. Newtonian is from the
Newtonian case, and Viscoelastic is from the viscoelastic
case.

Figures 3 and 4, respectively, show the probability den-
sity functions (PDF) for the z—component of the vortex-
stretching term, o.w?, and that for the vortex-stretching
term in the azimuthal direction, cr+w_2‘_, obtained using the
DNS data. The occurrence of the compression in the stretch-
ing (z—)direction is in fact discernible as large negative
values in the Newtonian case shown in fig. 3. In place of the
compression and reduction of w?, the azimuthal component
of the vortex-stretching term, a'+wi, takes predominantly
positive value as can be seen in the Newtonian case shown
in fig. 4. Thus, the azimuthal vorticity, wi, grows in time.

When the compression takes place in the stretching di-
rection, the pressure field reacts to relax this compression.
An estimate of the pressure Hessian term obtained using the
DNS data showed that the wzw+IIz+ term in Eqs. (4) and

(5) was predominantly negative, thus, predominantly,
.4 > 0. (6)

Thus, the pressure Hessian terms in Eq. (4) and Eq. (5) re-
act to decrease the magnitude of w? and increase that of Wi,

respectively. The ﬁz+ term tends to relax the occurrence
of compression in the stretching direction by forming the
concentrated low pressure region oriented in the azimuthal
direction, that is, the core region of the vortex tube with the
azimuthal vorticity is formed.

The eigenvalue of the —(S;pf; + S;eflk;) term,
[—(SikQ%; + S;xQ%i)]+ is approximately equal to (o4 —
o-)w,. The governing equation for the (04 — o )w, term
can be derived as

D
s =0 =20, (04 —a-Jws] (1)
2 2
1 w w?
- ( . ) (04 — o Jw:]
Oz — 04 Tz —0—
=~ = 1/ 2
—(H++-H——)wz"z(w+"w—)
loy —o_ ~ loy—o- ~
~ O, — =~ |
40,04 Tt 40, —0_ ®

Because the predominant term in the right hand side of Eq.
(7) was the 20 [(04 — 0 )w.] term, when o, < 0 the mag-
nitude of the (¢4 —0_)w: term decreased with lapse of time,
i.e., with the occurrence of compression, the source term for
generation of the flat sheet region  diminishes.

In a Burgers’ vortex layer model, using the analytical
solution of the pressure Hessian term contained in Eq. (7),
(H++ H__) Eq. (7) can be rearranged approximately as

D

7 (o4 =0 Jws] = ®)

852, o
<2 ' (0% +5%)(0% + 532)) oz [(04 — 0= )ws]

1 w? w?
-1 ( o+ ) [(o+ —o-)w:]
0, —04 O, —0O_

Since the prefactor coefficient for the second term in
the right hand side of Eq. (8) is positive, and the coef-
ficient of the third term is positive, the magnitude of the
[(c4 — 0-)w:] term is reduced, when compression occurs
along a Burgers’ vortex layer. It can be also seen in Eq. (8)
that the governing equation for the [(o4 — o_)w,] term is
nearly autonomous, implying that if the [(o4 — o_ )w.] term
is equal to zero at the initial state, this term may never be
produced in a later time evolution. The mechanism for the
generation of the flat sheet region is not yet revealed. Its
generation may occur through the initial setup of the flow
or via the amalgamation of the random background fluctua-
tions in a turbulent flow. Its detailed analysis will be left to
future works. We note that the (H.H. I'I__) term vanishes
in a Burgers’ vortex tube model, thus the pressure Hessian
term makes no significant contribution to the development
of the [(o4 — 0—)w.] term in the (axially-symmetric) tube
core region.

In summary, it is shown that analytical estimate of the
time evolution of the representative variables is overall con-
sistent with a scenario of the transformation process derived
using the DNS data. For details, see Horiuti (2003b).
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VISCOELASTIC EFFECT ON THE SHEET-TUBE TRANS-
FORMATION PROCESS

We consider that it may be possible to attenuate the
turbulence generation by terminating the occurrence of the
sheet-tube transformation observed in the previous section,.
One of the well-known phenomenon for turbulence reduc-
tion is the drag reduction by dilute polymer additives (e.g.,
Sureshkumar, Beris & Handel 1997). In this section, we
investigate the effect of viscoelasticity on the sheet-tube
transformation process using the Oldroyd constitutive equa-
tion which provides a fair representation of a viscoelastic
fluid (Oldroyd 1950).

The constitutive equation for the Oldroyd-A fluid can be
given with the Navier-Stokes equations as

dui | O(uiu;) 9p 8%u; v ci;
ou; | O\Uitj) _ OP A BN LT R
ot * Oz oz; +ﬁu8xkazk ( ﬂ))\ oz; ©)
8cij deij Oup  Ouy 1

ot T dzi (e ox; * dz; oks) )\(C” = %), (10)

where ¢;; denotes the conformation stress tensor, A the relax-
ation time, and 8 the ratio of solvent viscosity contribution
to total viscosity of solution. An approximate solution for
the Oldroyd-A model can be derived as follows with the ini-
tial condition at t = 0 of ¢;;(0) = ;.

t
cij(t) ~ &5 ——/ e_L_TSQSij(s)ds (11)
0

t T
_t=s 3uk Ouk
d dse™ x 2( Sin(s)=— = (r)Sk; ,
+/0 r/o se (k<s)azj(r>+azi<r) k,(s>>

in which the convective terms were discarded. The approx-
imate solution, Eq. (11), contains the time-memory effect,
which is important to describe the behavior of the viscoelas-
tic fluid since a material that has no memory cannot be
elastic. When the steady state is assumed, Eq. (11) can be
approximated as

Cij (t) & 0;5 — 22855 + 2)\2{25ikskj + (S,’kaj + Sjkﬂki)}-

(12)
The approximation for the conformation stress tensor, ¢;;,
derived using the Oldroyd-A constitutive equation is analo-
gous to the approximation for the subgrid-scale (SGS) stress
tensor obtained using the SGS nonlinear model (Clark et
al.1979; Horiuti 2003a).

‘We carried out DNS in which viscoelasticity was intro-
duced using Eqgs. (9), (10) and (12). The same flow field was
considered using the same parameter values as those shown
in the previous section, and A = 0.36 and 8 = 0.8. The ini-
tial values used for this computation were the DNS data at
t = 1.75 shown in fig. 1. Using the rms value of the S;; Sk;
term to estimate a characteristic strain rate, s, of the flow,
the estimate for the Weissenberg number, We, was yielded
as We= Ak & 78 at t = 1.75.

In fig. 6, we included the time evolution of the isosurfaces
of the eigenvalue, [—(SixQk; + Sk )]+, and @ during the
duration of time between t = 1.850 and t = 1.925 obtained
for the viscoelastic case (denoted as viscoelastic). It can be
seen in fig. 6 that, the flat sheet structures are formed in
both the Newtonian and viscoelastic cases, but the genera-
tion of the flat sheets is more abundant in the viscoelastic
case than in the Newtonian case. Accumulation of the az-
imuthal vorticity in the tubes generated in the viscoelastic
case, however, is rather weak, and the tubes formed in the
viscoelastic case appear to be more slender and shorter in

length than those in the Newtonian case. The formation of
the flat sheet occurs more frequently in the viscoelastic case
than in the Newtonian case, but its transformation into the
tube is markedly suppressed in the viscoelastic case.

Curved sheet
Flat sheet
...................... Tube core
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Figure 5: Distributions of PDFs for the z—component of
the elastic enstrophy generation term, w,W,, due to the
(SikQ;j + Sjx:) term obtained from the viscoelastic case.

It was found that these differences were attributed to
the differences in the profiles of the vortex-stretching term
as well as the elastic enstrophy generation term,

82 Cmj
b
0z, 0x;

P, = gjmwi (13)
in the Newtonian and viscoelastic cases.

In figs 3 and 4, we included the profiles of the PDFs
for the vortex-stretching terms, o,w? and o4w?, obtained
from the viscoelastic case. It can be seen that the amplitude
of the vortex-stretching terms obtained from the viscoelas-
tic case are markedly smaller than that obtained from the
Newtonian case, indicating that the sheet-tube transforma-
tion takes place less frequently in the viscoelastic case.

The elastic enstrophy generation term, P, can be writ-
ten as the inner product of the vorticity vector, w, with
the elastic vortex-stretching vector, W, the ¢—th component
of which is Wi(= €itm (0%¢rmj/0z1/82;)). When w and W
are projected onto the basis of the strain-rate eigenvectors,
et,e—,ez, P, can be decomposed as

P, =w, W, +wiWy +w-_W_. (14)

Figure 5 shows the PDFs for the z—component of this de-
composed P, term, w;W, due to the (S;xQ; + Siki)
term, in which ¢;; was set equal to (SixS%k; + SikQ%;) in
Eq. (13). Figure 5 was obtained from the viscoelastic case.
The PDFs were decomposed into those in the curved sheet,
flat sheet and tube core regions. It can be seen that the elas-
tic enstrophy was backwardly transferred into the fluid part
in all three regions, but the most intense backward transfer
occurred in the flat sheet region, indicating that the vor-
ticity in the stretching (z—)direction is strengthened in the
flat sheet region. As a result, the (S;cQu; + Sjrf:) term
tends to disrupt the transformation of the flat sheet into the
vortex tube by snapping the sheet back to the original flat
shape, i.e., an intense viscoelastic effect was incurred by the
(Sik8%; + S;jrSki) term primarily on the flat sheet (Horiuti
2003 a,b).
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Comparison of the Oldroyd A- and B- equations
An alternative constitutive equation of the conformation
stress tensor, ¢;;, is the Oldroyd-B equation as

ac,-j 801']‘ _ 3’uj Bu,-
Bt + ug oz, = {Cik a1 gack]) - (Cm + 61])- (15)

The approximate solution for the Oldroyd-B equation cor-
responding to that of the Oldroyd-A equation is derived as

Cij R —0;5 — 208 + ZAZ{—ZSikSkj + (Sikaj + SieQ%i)}
(16)
The approximate solution for the ¢;i; term yielded from the
Oldroyd-B constitutive equation is analogous to the solution
obtained using the Oldroyd-A equation (Eq. 12), and the
(SirQ; +5;£0%;) term is contained in both Oldroyd-A and
Oldroyd-B solutions. It should be noted that its coefficient
is +1, whereas that for the SGS nonlinear model is —1. It
appears that this coefficient should be set equal to —1 to
model the Newtonian fluids, while it should be set equal to
+1 for the viscoelastic fluids (Horiuti 2003a).
The production term of the total kinetic energy of the
fluid, u;u;/2, due to the nonlinear part of the c;j term for
the Oldroyd-A equation, P4, is given as

14
PA=(1- B)xciiSii = 4(1 = B)wASkSk; Sji,  (17)
while that for the Oldroyd-B equation, PB, is
14
PP =(1- ﬁ)XCiiji = —4(1 ~ B)rAS;; Sk;Sji.  (18)

The generation term of the total elastic energy, ¢;;/2, due to
the nonlinear part of the ¢ij term for the Oldroyd-A equa-
tion, PA, is given as

Pf = —¢ijSj; = —4)\2Sik5kjsji, (19)

and that for the Oldroyd-B equation, PCB, is identical to the
PA term as

PCB =¢S5 = —4/\25ikskjsji' (20)

We note that the derivative skewness, S;; Sy, ;Sij, is generally
negative on average in the homogeneous isotropic turbulence
(Batchelor 1967), and that the sign of the P4 term is oppo-
site to that of the PA term, whereas the signs for the PB
and PZ terms are the same. Thus, in the Oldroyd-A fluid,
the kinetic energy of the fluid is converted into the elastic
energy on average, whereas in the Oldroyd-B fluid, the elas-
tic energy is backwardly transformed into the kinetic energy
of the fluid on average, while the elastic energy is increased
simultaneously.

It should be noted that the (SikQ%; +8;%Q%;) term van-
ishes in the P4, PB, PA, PCB terms, thus this term makes no
contribution to the production of the (total) energy, but this
term is retained in the elastic enstrophy generation term, P,
(Eq. (13)). We consider that this term causes a significant
impact on the evolution of the viscoelastic fluid, although the
time-memory effect is equally important for the viscoelastic
fluid (Horiuti 2003a).

In the present study, we have shown the results obtained
using the approximate solution of the Oldroyd-A constitu-
tive equation. We have carried out the computation using
a full Oldroyd-A constitutive equation. The results were
similar to those shown in figs. 3, 4, 5, and 6. In the DNS
using the full Oldroyd-A and -B constitutive equations, the
behaviours of the energy and enstrophy exchange in their
solutions were consistent with the estimate presented above.

SUMMARY

We have studied a process for the transformation of the
flat sheet into the vortex tube in a homogeneous isotropic
turbulence. The result obtained using the DNS data was
consistent with the analytical estimate of the evolution of the
variables representing the sheet and the tube structures. It
was shown that when the viscoelastic effect was introduced,
its effect was primarily strong on the flat sheet region, and
the sheet-tube transformation process was disrupted.

For the compressible case, using the DNS data for the
compressible homogeneous isotropic turbulence, we found a
reduction of generation of the vorticity. Similarly to the
viscoelastic case, the flat sheets were generated in the com-
pressible flow case as well, but their transformation into the
tubes was disrupted (data not shown). This disruption oc-
curred as a result of the characteristic difference in the types
of the governing equations for the pressure field. In incom-
pressible flow, the pressure field is governed by the elliptic
equation, while in compressible flow it by the equation which
develops in time. The pressure-dilatation term was primar-
ily responsible for causing the disruption of occurrence of
the sheet-tube transformation and subsequent reduction of
vorticity generation in compressible flow.

This work was partially supported by Grants-in-Aid from
the Ministry of Education, Culture, Sports, Science and
Technology, Japan (Nos. 12650156 and 14550141). Main
computations were performed using the NEC SX-5 system
at the Cybermedia Centre, Osaka University.
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= 1.850 (Newtonian) t = 1.850 (viscoelastic)

t = 1.875 (Newtonian) t = 1.875 (viscoelastic)

t = 1.900 (Newtonian) t = 1.900 (viscoelastic)

t = 1.925 (Newtonian) = 1.925 (viscoelastic)

Figure 6: Isosurfaces of the sheet (white mesh) and the tube (black)
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