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ABSTRACT

A BiGlobal stability analysis technique based on spec-
tral/hp element technology is discussed, and applied to the
biomedically important problem of the flow through a con-
stricted channel. Results for both steady flows and the
Floquet analysis of time periodic flow are presented. In the
steady case the onset of three-dimensionality is investigated,
and the effect of stenosis extent is examined. In the periodic
case preliminary results concerning the initial bifurcation to
asymmetry are presented.

INTRODUCTION

Atherosclerosis, the formation of plaques within the ar-
terial wall, continues to be a major cause of death in the
developed world. The associated narrowing, or stenosis, of
the artery causes a significant reduction in the blood flow
supplied to downstream vessels. A further life threaten-
ing condition may occur if the plaque ruptures. This can
cause thrombosis of the affected vessel or particles to be-
come lodged in smaller vessels, possibly inducing myocardial
infarction or stroke.

While the fluid mechanical factors contributing to the
Initiation of sclerotic regions (the process of atherogenesis)
are fairly well understood (Caro et al., 1971, Nerem and
Cornbhill, 1980), those playing a part in plaque rupture are
less s0. Study of the flow within relatively highly occluded
artery models is therefore motivated, in order to characterise
the flow conditions that arise in the immediate neighbour-
hood of the plaque.

Physiological flow conditions within most large healthy
arteries are normally pulsatile in nature but typically oper-
ate in a laminar unsteady flow regime. However, the solution
of flow in stenotic geometries, such as that shown in Figure
1, provides an interesting additional fluid mechanical chal-
lenge since, for a given flow rate, the local Reynolds number
of the flow increases as the inverse of the vessel diameter
reduction. Therefore even at moderate levels of occlusion
transitional Reynolds numbers are possible.

Numerically, the high local velocities at the stenosis and
the need for a fine discretisation results in a greatly reduced
time-step when considering the CFIL stability restriction
associated with an explicit treatment of the advection op-

erator. The resulting high computational time can make
a thorough investigation of the many parameters involved
such as geometry, inflow waveform and Reynolds number,
prohibitively expensive.

A BiGlobal stability analysis (Theofilis, 2003) can alter-
natively be employed to study the laminar instabilities and
transitions occurring within the stenosis. Unlike classical
stability analysis where a one-dimensional base flow is con-
sidered and the other two spatial directions are harmonically
expanded, in the BiGlobal stability analysis both the basic
state and the amplitude functions of small-amplitude distur-
bances superimposed upon the basic state are non-periodic
two-dimensional functions; the third spatial direction is con-
sidered homogeneous and expanded harmonically in Fourier
wavenumbers 3. The method is thus suited to investigation
of the stability of flows with homogeneity of geometry in
one dimension, for example channel, cylinder or axisymmet-
ric geometries. In this paper, the geometry we consider is
a plane channel geometry, infinite in the z-direction, with a
prescribed contraction and subsequent re-expansion in the
y-direction.

In this paper we first present a brief introduction to the
numerical method involved in this BiGlobal stability analy-
sis, before demonstrating how the stability of stenotic flows
is affected by the Reynolds number, by the contraction ra-
tio of the stenosis and by the addition of pulsatility to the
inflow. These results are given in terms of the value of the
dominant eigenvalue, the shape of the dominant eigenmode,
and the spanwise wavenumber g.

NUMERICAL METHODOLOGY
We take as the governing equations for arterial flow the
incompressible Newtonian Navier-Stokes equations

du 1 1

- =-N(u) - =Vp+ —V?u inQ 1
5 = ~NW - Vpt o M
together with the continuity requirement

V.u=0inQ (2)

where u is the three dimensional velocity field, p and p are
the fluid density and pressure respectively, and Re is the
Reynolds number Re = UD/v. For our purposes the length
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Figure 1: Geometry of 60% occluded channel stenosis model
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Figure 2: Mesh used for base flow and stability calculations on 60% stenosis

scale D taken in the definition of the Reynolds number is
the channel height (see Figure 1), and the velocity scale U
the temporally and spatially averaged inflow velocity ).
N(u) is the nonlinear advection operator N(u) = (u: V)u.
Equation (1) is subject to no-slip boundary conditions at the
walls, a prescribed velocity at the inflow (steady or periodic),
and conditions of zero pressure and zero outward normal
derivatives of velocity at the outflow.

We decompose the instantaneous flow field into a two-
dimensional base flow, U, and a small perturbation u’:

u(z,y,z,t) = Ulx,y,t) + u'(z,y, 2,t) (3)

U is a solution of equation (1) on a two dimensional compu-
tational domain, €, which is invariant in the z-direction (the
direction of homogeneity). This base flow may be steady
(0U/8t = 0), or may be periodic in time (U(x,y,t) =
U(z,y,t + T) for all t and finite period T'). The periodic
case requires the use of Floquet stability analysis.

Placing the definition (3) into (1) and neglecting as small
the terms corresponding to the product of the small pertur-
bations we arrive at the linearised Navier-Stokes equations:

ou’

1 1
— _DN(u') — ~Vp' 2.1
B (u') pr + =V’ inQ (4)

Re

where 0’ is again constrained to be divergence free (satisfy-
ing {2)), a situation which is maintained by the perturbation
pressure field p’. u’ is constrained to be zero at the Dirich-
let boundaries and to observe the same outflow condition
as imposed previously on u, to ensure that the disturbance
flow satisfies the same boundary conditions as the complete
flow. DN is the linearised advection operator:

DN = (u’ - V)U + (U-V)u’ (5)

For the case of steady base flow DN is constant, and in
the periodic case it is time periodic also, with the same pe-
riod T as the base flow. Equation (4) can be written more
compactly as:

8 !
S = L) ®

where the linear operator L{u’) represents the right hand
side of (4), and is again periodic with periodic base flow.
Solutions of (4) comprise a sum of exponential functions
of the form iz, y, z,t)e’t. The modes @ are time periodic
when the base flow is periodic; in this case they are referred
to as the ‘Floquet modes’ of operator L. For steady base
flows we consider the exponents ¢. A mode is linearly un-
stable (will grow in time) if the real part of this exponent is
greater than zero. Conversely, in the study of periodic flows

we generally consider the ‘Floquet multipliers’, p = e°T,
which give a measure of the growth of the perturbation mode
throughout one base flow cycle. The corresponding mode be-
comes unstable if the magnitude |u| becomes greater than
unity.

A simplification to the form of u’ can be made due to
the homogeneity of the domain and the assumption that it
is infinite in the z-direction, by expressing the general per-
turbation as the Fourier integral (Barkley and Henderson,
1996):

[ <]
w'(z,y,2,t) = / a(x,y, B, 1)e*¥*dp (M)
- 00

This also has the effect of modifying the gradient operator
wherever it is used so that V = (8/8z,8/8y, ~iB). The
linearity of (4) ensures that perturbation modes with differ-
ent spanwise wavenumber 3 do not couple, and thus can be
calculated separately.

‘We use essentially the same method to find the dominant
(most unstable) exponents and Floquet multipliers in both
the steady and periodic cases. We define an operator A
describing the evolution of u’ over the period T (Schatz et
al., 1995):

w1 = Au'n) (8)

where u’,, is the perturbation field after n base flow cycles.
In the case of periodic base flow then A is equivalent to the
linearised Poincaré map corresponding to the orbit of the
base flow. The action of A is the time integrated effect of
the operator L on an initially infinitesimal perturbation over

one period:
T
A(u') = exp (/ L(u’)dt> (9
)

The Floquet multipliers are the eigenvalues of A, and the
eigenmodes of A correspond to the Floquet modes Gi. The
Floquet modes depend on the point taken to be the start of
the period; the Floquet multipliers do not. In the case of
steady base flow then an arbitrary time period T is chosen
for computational convenience and the relevant exponents
reclaimed via the relation ¢ = (In(x)/T). The eigenmodes
calculated are then time invariant, and give the initial form
of any instability arising.

The action of A is approximated by integrating (4) over
T/ At time-steps. This is performed by modification of an ex-
isting spectral/hp element solver for solution of the Navier-
Stokes equations (1) on three-dimensional domains with z-
direction homogeneity (Tuckerman and Barkley, 2000). The
non-linear advection operator N must be replaced with its
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Figure 3: Plot of real part of dominant eigenvalue against spanwise wavenumber 3 for 60% stenosis at a range of Reynolds

numbers

Figure 4: Out of plane perturbation velocity of dominant eigenmode at 8 = 1.6, Re = 300

linearised counterpart DN, and the gradient operator must
be modified as previously stated.

For Floquet stability analysis the periodic base flow is re-
quired at each of the time steps. Its periodicity suggests the
use of a Fourier series in time to represent it, facilitated by
using an FFT algorithm over a number of slices of the base
flow at the start of the calculation and subsequently interpo-
lating at each step. For the work in this paper 32 base flow
slices were used. All of the base flows were calculated us-
ing an unsteady two-dimensional spectral/hp Navier-Stokes
solver, on the same meshes as used for the subsequent sta-
bility analysis.

The eigenvalues of A are found via the time integration
of (4), using the Arnoldi method, avoiding the high memory
requirements of a direct method. For the work in this paper
a low Krylov subspace dimension was used, but sufficiently
large for converged eigenvalues to be obtained. The spec-
tral/hp method of spatial discretisation, chosen for this work
for its favourable convergence properties, is described in the
context of stability analysis by Theofilis et al. (2002). The
calculations in this paper have been performed on stenoses of
60%, 78% and 90% occlusion, using meshes of 840, 1054 and
1187 elements respectively. All calculations were performed
using 7 modes, corresponding to a maximum expansion base

polynomial order of 6. The mesh used for the 60% stenosis
case is depicted in Figure 2. Each curve of the stenosis is
described by 17 points, through which a cubic spline is inter-
polated for the purposes of the calculation. Analytically, the
top and bottom curves are each divided into two halves, and
described by a fifth order polynomial with zero derivative at
the end and centre of the stenosis.

RESULTS AND DISCUSSION

Instability analysis of steady basic flow

Sobey and Drazin (1986) discuss the two-dimensional
flow through a stenotic channel in the language of bifurcation
theory. At sufficiently low Reynolds number the steady flow
through a stenotic channel has a unique, symmetric solution.
As Re is increased a critical value is reached and the flow
becomes asymmetric, sometimes referred to as the Coanda
effect. Sobey and Drazin performed a number of numeri-
cal and experimental investigations to isolate this pitchfork
bifurcation.

We have turned our BiGlobal stability analysis technique
to the exploration of the linear stability analysis of flows in
a higher Reynolds number regime, in order to estimate the
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Figure 5: Plot of real part of dominant eigenvalue against spanwise wavenumber § for 60%, 78% and 90% stenoses at a fixed

Reynolds number of 150

onset of three dimensionality. We hope to also get a feel for
the nature of the instability and for the flow immediately
after its development.

Figure 3 shows the value of the real part of the dom-
inant eigenvalue as a function of the stability parameters
Re and the spanwise wavenumber 3, for the 60% occluded
stenosis model. It is immediately seen that the effect of in-
creasing the Reynolds number is a destabilising one, as the
curve is essentially shifted upward in the direction of larger
real part. The peak, at a wavenumber of around 1.6 cor-
responding to a spanwise disturbance wavelength of 3.9D,
seems very much geometry dependent, and appears invari-
ant of Reynolds number. The onset of three-dimensional
instability arises at a Reynolds number falling between 250
and 300, nearer to the 300 side. Figure 4 depicts the out-of-
plane perturbation velocity field of the dominant eigenmode
of the nearest calculation to this instability. It is clearly
a three-dimensional mode, and its growth corresponds to
the loss of translation symmetry in the z-direction. The
pairing of areas of velocity into and out of the page would
imply some rotation about an axis aligned parallel to the
2-direction. Further insight will be provided by plotting the
full three-dimensional perturbation field, and by perform-
ing a three-dimensional Navier-Stokes simulation of the flow
just beyond the instability. Figure 3 also appears to show
two additional longer wavelength instability modes arising
as the Reynolds number is increased. These lie at span-
wise wavenumbers of approximately 0.2 and 0.6, and will
become unstable at slightly larger Reynolds numbers than
those included in the figure. It would be interesting to as-

certain whether or not these would have an effect (through
non-linear interactions) on the primary instability.

The majority of the eigenvalues obtained are real, but
some of those corresponding to 0.4 < 3 < 0.6 are complex,
contributing to the slightly erratic behaviour of the curves
at these points.

Figure 5 shows the effect of stenosis extent on the real
part of the dominant eigenvalues over the wavenumber range
0 < 8 < 3. The dominant eigenvalue is plotted for each of
the 60%, 78% and 90% occluded channels with a steady
base flow at a Reynolds number of 150. Continuing the
trend shown in Figure 3 the 60% occluded base flow is stable
to three-dimensional perturbations at Re = 150. However,
the effect of increased stenosis is to destabilise the flow. It
can be seen that the peak real eigenvalue becomes greater
with each constriction of the channel. With 90% occlusion
the dominant eigenvalue clearly crosses the positive real axis
and the flow becomes unstable to three-dimensional pertur-
bations. Additionally, the shortening of the stenosis length
scale causes the disturbance wavelength of maximum insta-
bility to similarly shorten, marked by the movement of the
real eigenvalue peak to the right. Further calculation to
extend the 3 range of this graph and locate the peak is war-
ranted. An interesting point to note is that whilst the 60%
case yields real eigenvalues at its three-dimensional instabil-
ity, the 90% case displays complex eigenvalues.

The two-dimensional base flows used in these calculations
are presented in Figure 6. The flow through the 60% stenosis
is just mildly asymmetric, whereas the (still stable) 78%
occlusion shows much more deviation from plane Poiseuille
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flow. It is perhaps inevitable that the 90% occluded base
flow is unstable, as it contains a standing vortex that would
have a tendendy to amplify disturbances by inducing further
movement of itself via the velocities induced by its image
vorticity.

Floquet analysis of time-periodic base flow

Preliminary results have been obtained concerning the
stability of a two-dimensional flow driven by an oscillatory
volumetric inflow rate. The paraliel inflow, an approxima-
tion to plane Womersley flow, is given by

uy, t) = g <1 - 2—2) (1 + %sin(wt)) (10)

where R is the channel half-height and w the angular fre-
quency. The inflow at any time is thus instantaneously
equivalent to plane Poiseuille flow with a Reynolds num-
ber of [1 + 3/4sin(wt)]/v. w is chosen to provide a desired
Womersley number, o, according to the relationship:
2
o2 = B (11)
v

Figure 7 shows the two-dimensional flow within the 60%
occluded geometry at the peak inflow (at a quarter of a cycle)
of a calculation with & = 4 and Re, based on temporally and
spatially averaged inflow velocity, equal to 150. The flow
is symmetric and remains so throughout the entire cycle.
However, in direct analogy to the steady case, we would
expect increasing the Reynolds number to at some point
result in a bifurcation in which this symmetry is broken.

A full-period Floquet stability analysis finds that, as we
would expect for a converged flow, the dominant multiplier
associated with a # = 0 (two-dimensional) perturbation has
magnitude less than unity. An unstable two-dimensional
mode would be permitted to grow in the two dimensional
Navier-Stokes simulation through which the base flow is de-
termined. Quantitatively, for these conditions the dominant
multiplier is real, of magnitude 0.79. This is of interest as
we previously showed in Figure 6 that the steady flow of
Re = 150 through this geometry was mildly asymmetric.
Thus, as far as the initial asymmetry bifurcation is con-
cerned and comparison can be drawn, the effect of pulsatility
of the inflow is stabilising.

Contours of the vertical (z-axis symmetry breaking) ve-
locity field associated with the dominant, stable eigenmode
at the beginning of the cycle are depicted in Figure 8, to-
gether with selected two-dimensional streamlines. This is an
asymmetric mode and is believed to be the mode of the sym-
metry breaking bifurcation for the periodic flow case. Figure
9 shows the vertical velocity distribution of the base flow at
a Reynolds number of 200, at 11/16 of the cycle, where the
asymmetry is clearly visible.

It’s onset will be accurately determined by using sym-
metry boundary conditions along the channel centreline to
constrain the flow and subsequent Floquet stability analysis.
This BiGlobal stability analysis will also be used to calcu-
late the onset of three-dimensionality within these periodic
stenotic flows, and the effects of inflow frequency on these
instabilities.

CONCLUSIONS

The method of BiGlobal stability analysis has success-
fully been applied to the study of stenotic channel flows of
interest from the perspective of biomedical research. It has

been shown that there are instabilities arising within these
stenotic geometries within a Reynolds number range that
can be well resolved by our spectral/hp element method, and
that our method yields eigenvalues and instability modes
of high accuracy. The instability leading to three dimen-
sionality in a 60% occluded channel has been isolated, and
the effect of increasing the extent of the stenosis has been
demonstrated. The existence of further instability modes
at higher Reynolds numbers has also been shown. In ad-
dition, the method has been applied to the study of initial
bifurcation to asymmetry of a periodic flow solution. These
ground-breaking calculations have demonstrated the appli-
cability of the method to locating the onset of asymmetry
in the periodic flow through a stenotic channel, and pave
the way for finding the onset of three-dimensionality, and
for calculations in the near future assessing the stability of
axisymmetric stenotic flows.
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Figure 6: Vorticity field of steady two-dimensional base flow at Re = 150 for cases with (a) 60%, (b) 78% and (c) 90% stenosis

Figure 7: Vorticity distribution at 1/4 cycle for periodic flow with o = 4 and Re = 150

Figure 8: Countours of vertical velocity and streamlines of dominant two-dimensional Floquet mode for periodic flow with
a =4 and Re = 150

Figure 9: Vertical velocity distribution at 11/16 cycle for periodic flow with a = 4 and Re = 150
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