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ABSTRACT

Turbulent momentum and heat transport in idealized Czochral-
ski crystal growth configurations is investigated by means of direct
numerical simulation. The analysis of the flow data focuses on the
influence of crystal and crucible rotation on the flow structures and
the development of temperature fluctuations. A numerical parameter
study is performed to investigate how the variation of the numerous
flow parameters affect the turbulent transport processes. Finally, a
direct numerical simulation is conducted with parameters taken from
experiment in order to allow a direct comparison between numerical
and experimental results.

It is found that the counter-rotation of the crystal and crucible
leads to a complex flow, which is characterized by three major recir-
culation zones, if crucible rotation dominates the flow. The dynamics
of the flow are controlled by centrifugal forces counteracting buoy-
ancy and surface tension effects. High temperature fluctuations are
created within or close to the crystallization zone. Neither a varia-
tion of the melt height, nor a reduction of the crystal rotation rate or
a change of the Grashof and Marangoni numbers has a major effect
on the bulk flow structure and overall heat transfer. Increasing rota-
tion of the crystal changes the bulk flow structure strongly and leads
to an increased value of maximum rms temperature fluctuations, the
position of which is shifted towards the crucible bottom. A shifted
position of maximum rms temperature fluctuations is also observed if
heat radiation across the free surface is taken into account.

INTRODUCTION

Semiconductor industry has a high demand on pure silicon crys-
tals, which are needed to produce all sorts of electronical devices.
Around 90% of the worldwide silicon demand is grown utilizing the
Czochralski process. In Czochralski crystal growth configurations the
low Prandtl number silicon melt is kept in a cylindrical crucible. Heat-
ing the crucible side wall gives rise to buoyant convection. The crystal
is pulled from the free surface at rates between a few millimeters to
centimeters per second. Along the free surface, Marangoni convec-
tion develops due to radial temperature gradients between the side
wall and the comparably cold cylindrical crystal. Crucible and crystal
are commonly rotated in opposite directions, so that centrifugal forces
counteract buoyancy and surface-tension driven convection. In addi-
tion, thermal conduction and heat radiation at the free surface induce
losses of heat to the surrounding.

The fluid flow and heat transfer processes in the melt of a
Czochralski growth system are extremely complex, since several ef-

fects arise simultaneously in this process. The associated instabilities
are the Rayleigh-Benard, baroclinic and Kiippers-Lortz instability.
They lead to time-dependent three-dimensional motions in the melt,
which influence the transport of dopant, impurities and heat to the
crystal/melt interface and thus determine the purity of the crystal.

That the Czochralski melt flow is turbulent, has been suspected
about thirty years ago by Wilcox and Fulmer (Wilcox 1965) who used
thermocouples to measure temperature fluctuations in a calcium fluo-
ride melt (Pr = O(1)) confined in a rather small crucible (Gr = 105).
Most of the experimental investigations alluding to the fluctuating na-
ture of the flow have been done in rather small melt volumes of high
Prandtl number. One reason might be that the experimental investi-
gation of these low Prandtl number turbulent flow and heat transport
processes faces lots of difficulties. In large scale growth systems the
flow is mostly turbulent, the melts are usually opaque and due to their
high freezing temperature unsuitable for most tracer particles.

The convection of a transparent fluid (Prandt! number O(1))
forced by rotation of the crystal in a non-rotating heated crucible was
investigated in the experiment of Jones (Jones 1989). In the vicinity
of the crystal he observed temperature fluctuations of high amplitude.
From temperature measurements by Kuroda et al. (Kuroda 1982) it is
known that temperature fluctuations of large amplitude are responsi-
ble for an increased concentration of micro-defects in the crystal.

Vizman et al. (Vizman 2001) recently reported temperature mea-
surements at different locations within a silicon melt kept in a small
industrial Czochralski crucible of radius R, = 0.17m. For the same
configuration Enger et al. (Enger 2001) performed underresolved nu-
merical simulations on structured but curvilinear grids for Grashof
numbers up to Gr = 10°. They showed that their simulated tem-
perature data agree favorably with the temperature measurements of
Vizman et al. (Vizman 2001).

It is the aim of this work to investigate the influence that varying
rotation rates of crucible and crystal, heat radiation at the free surface,
different melt heights and crucible dimensions have on the develop-
ment of temperature fluctuations at high Grashof numbers ranging
from 1.0-10® t0 2.0 10°. This is done by means of Direct Numerical
Simulation on cylindrical grids with up to 4.5 million grid points. In
this study the Czochralski configuration is idealized in the sense that
a flat free surface and a flat crystal/melt interface are assumed.

NUMERICAL METHOD

The incompressible Navier-Stokes equations in Boussinesq ap-
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proximation
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are integrated applying Schumann’s volume balance procedure (Schu-
mann 1973) in cylindrical coordinates. The nabla operator V and
the velocity vector & = (ug,up,4,) in equations (1) - (3) are non-
dimensionalized with the crucible radius R, and the buoyancy veloc-
ity scale (0gR(T. —T;))!/2. A dimensionless temperature is defined
by (2T — (T. + T.))/(2(T. — T;)). b represents the dimensionless
buoyancy vector, p the dimensionless pressure and r the dimension-
less time.

The Grashof number Gr = (agR>(T. — T;))/v? and the Prandtl
number Pr = v/y = 0.0175 contain the thermal expansion coefficient
o =10"*1/K, the kinematic viscosity v = 3.12- 107 m? /s, the ther-
mal conductivity y and the gravitational acceleration g. Their values
are those of a Si-melt.

Integrating equations (1) - (3) following Schumann (Schumann
1973) provides a set of spatially discrete equations on staggered
grids. Utilizing second order central interpolation and differentiation
schemes leads to a method which is suitable for DNS. Within a second
order semi-implicit time integration scheme all convection/diffusion
terms of the momentum equations containing derivatives in circum-
ferential direction as well as all diffusive terms of the heat conduction
equation are integrated implicitly by a Crank-Nicholson time step.
The remaining convection terms are treated explicitly with a Leapfrog
time step, which is restricted by a linear stability criterion.

A fractional step approach provides the oscillation-free coupling
between pressure and velocity fields and leads to a three dimensional
Poisson equation for the pressure correction, which has to be solved
at each time step. A 3D-Helmholtz equation has to be solved due to
the implicit treatment of the temperature. The direct solutions of these
elliptic problems are obtained using FFT’s in @-direction and cyclic
reduction algorithms for the remaining 2D Helmholtz problems. The
1D Helmholtz problems associated with the implicit treatment of the
@-derivatives in the momentum equations are solved by a tridiagonal
matrix algorithm.

BOUNDARY CONDITIONS & GEOMETRICAL OUTLINE

The outline of the cylindrical domain of computation is presented
inFig. 1. A cylindrical crystal of radius Ry the axis of which coincides
with the axis of the cylindrical crucible grows out of a melt of height
H at the free surface. The freezing temperature of silicone (1485 K)
defines the dimensionless crystal temperature 7, = —0.5. Heating at
the crucible sidewall is modeled by constant temperature T¢ = 0.5.

Boundary conditions at the side and bottom walls of the crucible
and the interface to the crystal are the impermeability condition for the
wall normal components and the no slip conditions for the tangential
velocity components. The solid-body rotation of the crucible and the
crystal is imposed on the circumferential velocity component at the
crystal/melt and crucible-bottom/melt boundaries. Fixed temperature
boundary conditions are specified at the side wall of the crucible and
the crystal/melt interface. For most cases the bottom of the crucible
and the free surface is assumed to be adiabatic. The flat free surface
further forces the axial velocity component to vanish. Finally, at the
free surface, strain and heat radiation boundary conditions (4) - (6)
are discretized.
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crystal Tg = -0.5

flat free surface

— crucible T, = 0.5

i
2R,

Figure 1: Geometry of the Czochralski configuration.

where Ma = (cR.(T, — T;)) /v defines the Marangoni number which
contains the capillary coefficient ¢ = 0.149 according the value
for a Si-melt open to the ambient air. Furthermore, ¢ = 5.75 -
10-8.7/(sm*K*) denotes the radiation constant, € = 0.23 the emis-
sion coefficient, A = 46.6J/(smK) the thermal conductivity and 7
the background temperature.

RESULTS

The different flow parameters used in the direct numerical simula-
tions (DNS) discussed below are summarized in Table 1. The parame-
ter combination of DNS; defines the reference case of a crucible with
the radius R, = 4.8cm rotating at 16.8 rpm and having a temperature
difference AT = T, — T; = 91.4K. This leads to a Grashof number
Gr = 10%, a Marangoni number Ma = 36000 and a Reynolds num-
ber based on the angular frequency ®, and the radius of the crystal
of Re = wsR2 /v = 4712. Furthermore, a rotation ratio @, /®; = —0.7
was specified. For all simulations grids with Ny = 128 points in ¢-
direction were used. Regarding the axial and radial directions the
number of grid points N, and N, used are summarized in Table 1.
With DNS; - DNS7 we study the influence of parameter variations
on the turbulent momentum and heat transport comparing the results
to those obtained in DNS;. For DNS) — DNS; the ratio between the
crystal and crucible radius was fixed to Ry /R = 0.5. Solely for DNSs,
which was performed to compare our results (o temperature measure-
ments by Wacker Siltronic (Wacker 2001), a ratio R, /R: = 0.294 was
specified.

Table 1: Flow parameters and grid points of turbulent Czochralski
flow simulations (N = 128 in all cases).

DNS 1 2 3 4
N,,N, | 196,174 | 66,92 66,92 | 130,130
Gr 108 108 108 108
Ma 36000 36000 36000 36000
Re 4712 4712 76.7 20950
o, /o —0.7 —0.7 —43.0 —0.1
H/R, 1.0 0.5 1.0 1.0
DNS 5 6 7 8
N,,N, | 196,196 | 130,130 | 130,130 | 131,174
Gr 10° 108 108 1.6-10°
Ma 70000 36000 5000 28000
Re 14902 4712 4712 16782
0/ 0 ~0.7 —0.7 —0.7 —0.25
H/R, 1.0 1.0 1.0 0.5
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DNS was started at ¢ = 0 with the initial field
Ur =g = Uy = 0, T= .+ Trandnm )]

where T;4n40m stands for numerically created random temperature per-
turbations between —0.1 and 0.1. After the solution of DNS) reached
a statistically steady state, an instantaneous flow field was interpo-
lated on the other grids to define the initial turbulent fields for DN'S,
- DNSg. After each of the simulations reached a statistically steady
state more than 1500 realizations with a time lag of 50 time steps were
averaged in circumferential direction and in time to obtain stable sta-
tistical values.

Instantaneous fields

In a perspective view contours of the radial velocity component
and of the temperature field which were calculated in DN'S | are shown
in Fig. 2. Buoyancy drives the melt upwards along the heated crucible
side wall as indicated by the wall parallel isotherms in this region
(Fig. 2 bottom). The flow turns inward at the meniscus and moves
along the free surface creating a flow towards the cylinder axis. In
the vicinity of the crystal the fluid encounters the outward flow driven
by centrifugal effects due to crystal rotation. These two counteracting
mechanisms lead to local ejections of cold fluid into the buoyancy
driven hot recirculation zone creating large amplitude temperature
fluctuations there, as indicated by the dashed lines at the free surface
in Fig. 2 bottom.
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Figure 2: Snapshot of the instantaneous radial velocity component u,
((tr)max = 1.497, (uy)min = —1.581) and the instantaneous tempera-
ture 7'. Solid/dashed contour lines represent positive/negative values.

Statistically averaged flow fields
Streamlines of the mean velocities in a (z, r)-plane in Fig. 3 reveal
three major recirculation zones for DNS,. One of these cells develops

underneath the crystal, the other one along the crucible wall and the
third one just underneath the free surface.

Similar to the instantaneous temperature field the isotherms of
the mean temperature are vertically orientated near the side wall of
the crucible as depicted in Fig. 4. The cold fluid underneath the crys-
tal is driven outward by the crystal rotation creating high temperature
gradients when heated up by the fluid of the buoyancy driven recircu-
lation zone. The mean isotherms underneath the crystal are aligned
with the crystal/melt interface fulfilling a necessary condition for a
vertically uniform crystal growth. Also benefitial for solidification is
the encapsulation of cold fluid underneath the crystal since this pre-
vents undercooling of the meit.

Contours of rms temperature fluctuations are presented in Fig. 5
The position of the maximum rms temperature fluctuation is located
within the crystallization zone close to the crystal edge with values of
Toms = 0.17(% 15.4K). Instantaneous temperature fluctuations even
reach values of 28K. These large temperature fluctuations are the
most probable cause of micro-defects in the crystal.

z/R,

r/R;
Figure 3: Streamlines of the mean velocity fields projected into (z,r)-

planes of DNS) (reference case).

“0.0 0.2 0.4 0.8 0.8 1.0
r/R.
Figure 4: Mean isotherms of DNS| (reference case). Solid/dashed
lines represent positive/negative values.

Spatial resolution requirements

An upper limit for the mean mesh width A, of a DNS was
derived by Grotzbach (Grotzbach 1983) demanding that the Kol-
mogorov length scale /x = (£/v?)!/4 has to be resolved on the mesh.

h= (rA(pArAz)l/3 < 1E(V3/€)1/4 OF  Pgin = n/s,l,,ﬁGr‘yg 8

In eq. (8) the dimensionless mean mesh width A4,,;, depends on the
Grashof number and the dimensionless dissipation rate €, which a
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Figure 5: Contour lines of rms-temperature fluctuations of DN, (ref-
erence case). Max(x) : 0.17.

priori is unknown. Evaluating € using DNS)-data a maximum dissi-
pation rate of x4, = 0.377, which peaks just underneath the crystal
edge and a volume averaged value € = 0.0066 was obtained. Subsi-
tuting €4 in €q. (8) leads to a mean mesh width hpin = 0.0044. This
must be compared to the mean mesh width of DNS;, which varies
from k& = 0.00277 at the centerline to & = 0.0108 at the crucible side
wall. Taking into account that the dissipation rate peaks underneath
the crystal edge for r/R. = 0.5 and that £ is considerably lower any-
where else in the flow, it is concluded that the grid is fine enough to
resolve all the major physics.

Numerical parameter study

The streamlines of the mean velocities in Fig. 6 reflect the flow in
the case of the smaller melt height (DNS;), with the three major re-
circulation zones revealing similarities to the flow observed in DNS;.
As indicated by the dashed isotherms in Fig. 7 cold fluid extends
over more than one half of the melt height. Although rotation rates
of crucible and crystal are unchanged, the wetting surface at the cru-
cible sidewall and consequently the influence of crucible rotation is
reduced.

For the lower crystal rotation rate in DNS3 streamlines of the
mean velocity field and isotherms (not shown) reflect the same fiow
structure as presented in Fig. 6 for DNS;. Even contours of rms tem-
perature fluctuations of DNS, (lower melt height) and DNS; (smaller
crystal rotation) and the position of their maximum values agree re-
markably well. Therefore, for more information on the structure of
rms temperature fluctuations in the case of DNS; and DNS3 the reader
is referred to Fig. 5 reflecting case DNS;.

On the other hand lower crystal rotation rates and to some degree
lower melt heights damp temperature fluctuations as indicated by the
lower maximum 7}, in Table 2. A strong change in the flow struc-

Table 2: Maxima of rms temperature fluctuations for DNS; - DNSg

DNS 1 2 3 4
Tymsmax | 0.170 | 0.155 | 0.123 | 0.181
DNS 5 6 7 8
Tymsmax | 0.197 | 0.101 | 0.161 | 0.107

ture due to the high crystal rotation is visible in Fig. 8 (DNSs). A
single recirculation zone dominates the mean flow in the (z,r)-plane,
while two smaller cells are observed close to the upper part of the
crucible wall and below the free surface. Additionally, due to the
increased rotation of the crystal, a small recirculation structure is cre-
ated just underneath the crystal. Therefore mixing is enhanced within
the crystallization zone leading to more uniform radial concentration
gradients of impurities and dopants on the one hand. On the other

z/R,

Figure 6: Streamlines of the mean velocity fields projected into (z,r)-
planes of DNS; (low melt height).

z/R.
TrUvTerTg
VA

Figure 7: Mean isotherms obtained in DNS, (low melt height).
Solid/dashed lines represent positive/negative values.

hand this recirculation zone also acts as a trap for these substances.
As indicated by the dashed isotherms in Fig. 9 cold fluid extends over
more than one half of the melt height.

.0

z/R,

0.0

Figure 8: Streamlines of the mean velocity fields projected into (z,7)-
planes of DNS3 (high crystal rotation).

A shift towards the crucible bottom and axis of the position of
maximum rms temperature fluctuation associated with an increased
maximum value of T,ms = 0.181(= 16.5K) is reflected in Fig. 10.
Although temperature fluctuations of high amplitude are further in-
creased for high crystal rotation rates, within the crystallization zone
they are damped.

Increasing the Grashof number and the Marangoni number in
DNSs does not significantly change the structure of the overall mo-
mentum and heat transport. Solely, the amplitude of maximum rms
temperature fluctuations increases (see Table 2), but its position re-
mains.

Finally in DNS¢ and DNS7, heat radiation at the free surface
is taken into account assuming a background temperature of Ty =
1450K. This has a remarkable effect on the radial heat flux close
to the crystal edge as shown in Fig. 11. In contradiction to Fig. 5
the isotherms are almost uniformly distributed along the free surface,
reflecting the decreased radial heat flux at the crystal edge. Obvi-
ously, this also reduces the spatial resolution requirements, which
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z/R,

Figure 9: Mean isotherms of DNS; (high crystal rotation).
Solid/dashed lines represent positive/negative values.

z/R;

Figure 10: Isotherms of the rms fluctuating temperature of DNS;
(high crystal rotation). Max(x) : 0.181.

are extremly high close to the crystal edge due to high temperature
and velocity gradients, if heat radiation is neglected. Besides mod-
eling heat radiation at the free surface, the Marangoni number was
reduced in DNS7. The position of maximum rms temperature fluctua-
tion which is shifted towards the cylinder axis, away from the crystal
edge and the crystallization zone is shown in Fig. 13.

0.8 0.8 1.0

r/R.
Figure 11: Isotherms of the rms fluctuating temperature of DNS
(heat radiation considered).  Solid/dashed lines represent posi-
tive/negative values.

. LN
0.0 0.2 0.4 0.6 0.8 1.0
r/R;
Figure 12: Isotherms of the rms fluctuating temperature of DNSg
(heat radiation considered). Max(x):0.101.

0.6
r/R;

Figure 13: Isotherms of the rms fluctuating temperature of DNS;
(small Marangoni number). Max(x) : 0.161.

Comparison to experiment

DNy, the flow parameters of which are presented in Table 1, was
conducted to compare computed temperature data to measurements,
which were performed in a LEYBOLD EKZ 1300 crucible at Wacker
Siltronic in Burghausen (Germany) (Wacker 2001). The same config-
uration was considered by Vizman et al. (Vizman 2001) and Enger et
al. (Enger 2001). In order to ensure comparability of the computation
with this experiment, the wall temperature distributions for the DNS
were interpolated from measured temperatures according to:

T(z/R.) = ~4.6(z/R.)> +6.85(z/R.)* —3.615z/R. +0.5, (9)

T(r/R.) =0.619(r/R.)*—0.119. (10)

Additionally heat radiation at the free surface was modelled using two
different background temperature values, 7, = 1510K for 5cm < r <
10cm and Ty, = 1560K between r = 10cm and the wall.

The computed streamlines of the mean velocity fields are pre-
sented in Fig. 14. They indicate a flow, which is characterized by five
major recirculation zones. The mean isotherms shown in Fig. 15 re-
veal a predominantly transversal orientation, for which the region of
cold melt is increased. Contours of the rms temperature fluctuations
demonstrate the existence of two characteristic regions of tempera-
ture fluctuations, one below the free surface with maximum values
which are low compared to those in Table 2, and the other one be-
low the crystal, where the contours are alligned with the crystal/melt
interface.
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Figure 15: Isotherms of the mean temperature of DNSg. Solid/dashed
contour lines represent positive/negative values.
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r/R.
Figure 16: Contours of the rms fluctuating temperature of DNSs.
Max(x) :0.107

The comparison of computed and measured values of mean tem-
perature and rms temperature fluctuations for 9 different positions
within the melt is presented in Table 3. The mean temperature values
reveal differences of less than 6% of the overall mean temperature
difference AT . This underlines, that although the Czochralski process
was idealized to some extent, the simulations produce reliable results.
Somewhere higher differences for the rms temperature fluctuations
are found. To understand this, it must be noted, that the thermocou-
ples used for the measurements in the hot Si-melt do not capture high
frequency temperature fluctuations. This might be the reason, why
the measured rms temperature fluctuations are low compared to the
simulation data for all locations depicted in Table 3.

Table 3: Comparison of measured and computed mean temperatures
and rms temperature fluctuations

2/Re,r/R. | 044,024 | 0.32,0.24 | 0.21,0.24
(T ) num —0.33 —~0.19 —0.13
(T)exp —-0.30 -0.22 —0.17
Trms.num 0.047 0.058 0.051
Tyms,exp 0.037 0.045 0.0395
z/Re,r/R; | 044,043 ] 0.32,0.43 | 0.21,0.43
(T —~0.248 —0.121 —0.059
(Texp —0.279 —0.176 —0.113
Trms,num 0.081 0.064 0.053
Trms exp 0.034 0.047 0.042

CONCLUSIONS

Direct Numerical Simulations of the turbulent flow in an ideal-
ized Czochralski crystal growth configuration have been performed
for two melt heights, four different rotation rates of the crystal and
crucible and for varying Marangoni and Grashof numbers.

While subjected to rotation by the crucible, the fluid is driven up
the heated side wall by buoyancy and forced towards the crystal at
the miniscus. From there surface tension drives the flow towards the
crystal edge, where it encounters the centrifugally forced flow from
underneath the crystal. The positions of maximum rms temperature
and velocity fluctuations are located within the crystallization zone
just underneath the crystal edge.

Decreasing either the melt height, the rotation rate of the crys-
tal or changing the Grashof and/or Marangoni number leads to minor
changes in the bulk flow structure. Especially for low melt heights
an increased influence of cold fluid increases the possibility of un-
dercooling of the melt underneath the crystal, while rms temperature
fluctuations decrease slightly.

Strong changes in the bulk flow structure are observed for high
rotation rates of the crystal. The increased centrifugal forces under-
neath the crystal drive one major recirculation zone. Maximum rms
temperature fluctuations increase with the rotation rate of the crystal.
The position of maximum values moves towards the crucible bottom
for DNS4 (high crystal rotation rate). This shifted position of max-
imum rms temperature fluctuations, which is also observed if heat
radiation is modelled and the Marangoni number is decreased might
lead to more friendly crystal growth conditions. The trade-off proba-
bly is a reduced mixing underneath the crystal, where impurities and
dopant might be trapped in a small recirculation zone.

Good agreement of mean temperatures, which differed by less
than 6%, was obtained in a comparison of computed and mea-
sured temperatures. This underlines that idealization of the industrial
Czochralski process is justified.
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