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ABSTRACT

The evolution of a counter-rotating vortex pair in a sta-
bly stratified fluid is investigated using direct numerical
simulations. The study focuses on the short-wavelength in-
stability occurring in this flow and subsequent decay of the
vortices. With stable stratification, the instability exhibits
an earlier onset and higher growth rate than in an unstrat-
ified flow. This is due to the enhanced strain that occurs
when the vortices move closer together as a result of the
generated baroclinic torque. The decay of the vortex pair is
enhanced with stratification due to additional mechanisms
present in the flow. Secondary vertical vortex structures
form between the primary vortices which enables exchange
of fluid in the transverse direction. Detrainment of fluid from
the primary vortices by the generated baroclinic torque also
contributes to the breakdown of the flow. Computed en-
ergy spectra show the evolution of the primary instability,
development of harmonics, and late time behavior.

INTRODUCTION

A counter-rotating vortex pair is a model flow of both
practical and fundamental significance. Such a flow may be
observed in the wake of an aircraft or at the small scales in
sheared turbulence. In either case, it is of interest to under-
stand the behavior of the flow in a density stratified envi-
ronment. A counter-rotating vortex pair is known to exhibit
a long-wavelength (Crow) instability (Crow, 1970) which re-
sults in a symmetric sinusoidal deformation of the vortex
cores with wavelength of 8.6b,, where b, is the initial vortex
spacing. The effect of ambient stratification on the Crow
instability has been investigated by Garten et al. (2001).
In unstratified fluids, laboratory experiments (Sarpkaya and
Suthon, 1991, Thomas and Auerbach, 1994, Leweke and
Williamson, 1998) and numerical simulations (Laporte and
Corjon, 2000) have shown that a short-wavelength insta-
bility may also develop in a counter-rotating vortex pair.
The short wave (elliptic) instability is associated with the
ellipticity of the streamlines in the vortex cores due to the
strain induced by one vortex on the other (Leweke and
Williamson, 1998). The vortices exhibit an antisymmetric si-
nusoidal deformation with wavelength of order b,. Recently,
an experimental and numerical study by Delisi and Robbins
(2000) showed the development of a short wave instability
in stably stratified flows. The wavelength of the instability
was found to be longer (approximately b, — 2bo) than that
reported for unstratified flows. Their results indicate that
stable stratification results in an earlier onset and a more
rapid growth of the instability at the expense of the Crow
instability. Results from large eddy simulations (LES) of
vortex pairs in stably stratified fluid (Switzer and Proctor,

2000) indicate that the level of ambient stratification and
turbulence determine whether the long-wave or short-wave
instability dominates. Holzépfel et al. (2001) also performed
LES and showed that in the case of a quiescent atmosphere
and ambient stratification, the decay of the vortices is con-
trolled by the interaction of the short-wave instability and
baroclinic vorticity. All three studies indicate that the short
wave instability is enhanced with stable stratification. How-
ever, quantitative assessment of the instability and details
of the associated physical processes are limited.

The objective of the present study is to further inves-
tigate the effects of stratification on the short-wavelength
instability and subsequent nonlinear evolution of the flow.
A more quantitative assessment of the instability is carried
out. Growth rates of the instability are evaluated for a range
of stratification levels. Energy spectra are computed and
show the evolution of the primary instability, development
of harmonics, and late time behavior. Detailed analysis is
carried out to understand the development of structural fea-
tures and the associated physical processes leading to the
decay of the vortex pair.

DIRECT NUMERICAL SIMULATIONS

The simulations are performed using a direct numeri-
cal simulation (DNS) code originally developed for stratified
homogeneous turbulence (Gerz et al., 1989). The code
solves the three-dimensional Navier-Stokes equations with
the Boussinesq approximation. Figure 1 shows the coordi-
nate axes and initial flow conditions. The simulations are
initialized with a two-dimensional distribution of axial vor-
ticity wy corresponding to a counter-rotating vortex pair and
a three-dimensional random velocity perturbation. Uniform
stable stratification (dp/dz < 0) is superimposed. The ini-
tial separation of the vortices is b,. The dimensions of the
computational domain are L, = 6b,, Ly = 6bo, L, = 18b,,
with resolution of 192 x 192 x 576 grid points, respectively.
Periodic boundary conditions are employed in all three di-
rections. The axial length, L, = 6b,, is short enough to
effectively exclude the Crow instability while the transverse
length, L, = 6b,, is long enough to minimize the effects
of neighboring vortices. The vertical length, L, = 18b,,
is extended to accommodate the downward descent of the
vortices which leaves behind a wake. The Reynolds num-
ber of the vortex pair based on the initial circulation Ty is
Rep = TI's/v = 2400. The Froude numbers, Fr = W, /Nb,,
considered are F'r = 2, 5, co. Here, W, = To/2nbs is the
initial advection velocity of the vortices and N is the buoy-
ancy frequency (N2 = —(g/po)dp/dz). The flow conditions
considered represent relatively weak stratification (Fr > 1).
Flows with strong stratifcation (Fr < 1) exhibit quite dif-
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Figure 1: Coordinate system and initial conditions; counter-
rotationg vortex pair and uniform stable stratification.

ferent behavior and are a subject of another study. Nondi-
mensional time is t* = tW,/bo.

RESULTS

Figure 3 shows the evolution of the average axial and
transverse vorticity magnitudes, I'y and I'z, respectively.
The plot of T';, which measures the perturbation vorticity
amplitudes, illustrates the evolution of these flows which
generally consists of three phases (Laporte and Corjon,
2000): transient, linear, and nonlinear. During the tran-
sient phase (t* < 1), the perturbation field decreases. The
vortices adapt to the presence of each other in an essentially
two-dimensional process. Due to the induced velocity, they
propagate downwards and develop an elliptic shape due to
the mutually induced strain. The effects of stratification
are not yet three-dimensional and the behavior of the un-
stratified and stratified flows are similar. The linear phase
is marked by the development of the short wave instability
which is indicated by a corresponding growth in I'; although
Tz €« T'y. The onset of the linear phase is earlier for the
stratified flows and the growth rate of 'y increases with
level of stratification (lower Fr). In the nonlinear phase,
the perturbation amplitudes become significant. I'; reaches
a peak and then decreases.

The time development of the circulation, I (axial aver-
age for one vortex), is shown in Fig. 2. In the unstratified
flow (Fr = 00), I exhibits a moderate decrease in the linear
phase and a more significant decay in the nonlinear phase.
In the stratified flows, I" is seen to decrease significantly
through both the linear and nonlinear phases. This is due
to the generation of baroclinic torque. As the vortex pair
descends through the stably stratified fluid, it transports
lighter fluid into a region of heavier fluid (Fig. 4a). Strong
horizontal density gradients are thereby established which
generate axial vorticity of opposite sign through baroclinic
torque (Fig. 4b). This vorticity is included in I'" and results
in the reduced values. Figure 5 shows a conditional average
circulation (I')w, , (conditioned on wy > 0) which effectively
excludes the baroclinic vorticity and provides a measure of
the circulation of the primary vortex. In the stratified flows,
(T)w, 4 shows a moderate reduction during the linear phase
and an enhanced decay during the nonlinear phase. The
rate of decay increases with level of stratification. At late
times, this simple conditional averaging is no longer mean-
ingful due to the complexity of the flow.

Figures 6 and 7 show the development of vortex struc-
tures in the unstratified (Fr = oo) and stratified (Fr = 2)
flows, respectively, during the linear and nonlinear phases.
The structures are visualized by isosurfaces of the second
invariant of the velocity gradient tensor, IT = (w?/2—52)/2
(where w is vorticity, S is the strain rate tensor). The linear
and nonlinear phases will each be discussed in more detail

in the following sections.

Linear Phase

In the unstratified flow, following the transition phase
a dominant wavelength is selected and amplified deforming
the vortices in a sinusoidal manner (Fig. 6, t* = 10.5).
As discussed in Leweke and Williamson (1998), the short
wave instability is an elliptic instability which evolves in
the vortex pair in a coupled “cooperative” manner. Close
examination of the vortices reveals the distinct geometry as-
sociated with this instability. The deformation is in phase
when viewed from the top (z — y plane) and out-of-phase
when viewed from the side (y — z plane); the core displace-
ments are of an antisymmetric mode. In the = — z plane
(front view), the deformation of each vortex is oriented in
a plane approximately 30° — 40° from the horizontal. This
direction corresponds to the direction of the principal exten-
sional strain (Leweke and Williamson, 1998).

In the stratified flow, the instability is observed earlier
in time (Fig. 7, t* = 5.25), consistent with I'; in Fig.
3. The basic geometric features of the elliptic instability
are retained although the angle of the deformation plane
from the horizonal is much greater (approximately 50° —60°
for Fr = 2). In addition, the separation distance, b, be-
tween the two vortices decreases in time. This is due to the
secondary flow associated with the opposite sign baroclinic
torque which advects the primary vortices towards one an-
other. Figure 8 shows b/b, as a function of time for various
Fr. With increasing stratifcation, b is reduced more rapidly.
The enhanced strain that occurs when the vortices are closer
together causes the earlier onset of the instability.

In order to carry out a quantitative assessment of the lin-
ear phase, the wavelength, Ak, of the most amplified mode
and the corresponding growth rate, o, are determined. The
spectral energy, E(k,t) = 22 (k, t), is obtained by perform-
ing a one-dimensional Fourier transform in the axial (y)
direction of the velocity, ¥ = (=, k, 2,t), and then evaluat-
ing the average in the transverse (z — z) plane, 92 (k,t). The
most amplified mode, k = kmaz, can be determined from
E(k,t). Since the base flow is two-dimensional in the z — 2
plane, E(k > 1,t) indicates the perturbation energy. Figures
9 and 10 shows E(k,t*) for F'r = oo and Fr = 2, respectively

At t* = 0, the spectrum is flat corresponding to the ini-
tial random perturbation field. Beyond the transition phase,
the perturbation energy increases at the low wavenumbers.
In the unstratified flow (Fig. 9), a dominant wave number,
kmaz = 6, is identified which corresponds to the most ampli-
fied wavelength, /b, = 1.0. This compares reasonably well
with the reported wavelength of A/b, = 0.77 in Leweke and
Williamson (1998). Figure 11 shows the time development
of E(kmaqx,t). The growth rate, o, of the most amplified
mode energy is obtained from o = 1/2(dInEy,, ,_ /dt). For
Fr = o0, 0* = o/('/2mbo2) = 0.83. The growth rate mea-
sured in the experiments is * = 0.94+0.12. Overall, results
for the unstratified flow are in agreement with the experi-
ments of Leweke and Williamson (1998).

Figure 11 suggests that the growth rate increases with
increasing stratification. However, in the stratified flows,
the perturbation energy also includes that associated with
secondary flow arising from stratification effects (baroclinic
torque). Thus, A/bo and o* are determined using an alterna-
tive method based on Fourier transforms of the vortex core
displacements. Results show that X is the same as that in
the unstratified flow (A\/bo = 1.0), however a significant in-
crease in ¢ is exhibited. This is due to the enhanced induced
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Table 1: Growth rate, o*, from core displacement.

Fr 2 5 00
o* 1.9 13 0.72

strain in the vortices, resulting from the reduced vortex sep-
aration distance, which accelerates the instability. Table 1
lists computed o* as a function of Fr which shows that as
the stratification increases, o* increases.

Nonlinear Phase

The early stage of the nonlinear phase for Fr = oo is
marked by the formation of "knobs” which appear at the
peaks of the sinusoidal deformation (Fig. 6, t* = 13.5).
Vorticity concentrates within the knobs as indicated in the
subsequent figure (t* = 15.0). During this time, the spec-
trum exhibits the development of harmonics of the primary
instability (Fig. 9, 12 < ¢* < 15). At times ¢* = 15.0 to 16.5
(Fig. 6), secondary transverse vortex structures are observed
to develop on the upstream side of the vortex pair. The for-
mation of these structures are explained by considering the
distinct geometry of the primary instability which brings the
primary vortices closer together at the leading edge of the
vortex pair (see t* = 12.0 in Fig. 6). As discussed in Leweke
and Williamson (1998), the phase relationship of the defor-
mation is such that inner and outer layers of a vortex are
displaced in opposite directions. At the leading edge, the
outer layers of one vortex is in proximity to the inner core
of the other which leads to the extraction of fluid from one
vortex into the other (Fig. 12a). As indicated in Fig. 2,
this process results in a more rapid reduction in I'. The
azimuthal vorticity occuring in the outer layers (see Leweke
and Williamson, Fig. 12), which includes the transverse
component, wy, is amplified through vortex stretching by
the extensional strain at the leading stagnation point. Sub-
sequently, w; becomes the dominant component of vorticity
and the associated structure extends over the leading edge
of the vortex pair oval (Fig. 6, t* = 16.5). An array of
transverse counter-rotating vortex pairs results, two pairs
for every wavelength of the primary instability. The corre-
sponding spectrum (not shown) exhibits the primary mode
and first harmonic but the higher wavenumber modes are no
longer distinct. For times, t* > 15, the primary instability
becomes saturated and the corresponding growth rate is re-
duced to zero. It is interesting to note that at ¢* = 18.0,
the corresponding energy spectrum (Fig. 9) is quite broad
with no preferred mode although coherent structures remain
in the flow (Fig. 6). Evidently, there is sufficiently complex
small-scale structure and effective energy transfer across all
modes. Laporte and Corjon (2000) suggest that transition
to turbulence is indicated when all modes have reached the
same order of magnitude and all growth rates are zero or
less. Late time spectra (t* > 18.0) for the present results do
indicate growth rates of zero or less for all modes.

In the stratified flow, knob structures also initially form
(Fig. 7, ¢* = 6.0). The corresponding energy spectrum (Fig.
10) shows the development of the harmonics. The extrac-
tion of outer layer fluid from one vortex into the other at the
leading edge of the vortex pair also occurs (Fig. 12b). How-
ever, the transverse structures observed in the Fr = oo are
10 longer significant (Fig. 7). This is due to the deceleration
of the vortex pair descent caused by baroclinic torque which
results in a reduced extensional strain at the leading edge.
Consequently, amplification of wy at the leading stagnation

point is not as significant. Alternatively, pairs of counter-
rotating vertical structures develop, between and above the
primary vortices, with one pair for every wavelength of the
primary instability (Fig. 7, t* = 6.75). Such vortex struc-
tures are also observed in the simulation results of Delisi and
Robbins (2000) and Holzipfel et al. (2001). An enhanced
extensional strain in between the vortices, caused by the re-
duced separation distance, amplifies the azimuthal vorticity
(w:) existing between the primary vortices which leads to
the formation of the vertical structures. By t* = 7.5, w,
is the dominant component of vorticity in the flow. The
corresponding spectrum (Fig. 10, t* = 6.75) shows the
development of the first harmonic. Beyond this time, the
primary mode saturates and the spectrum broadens at the
high wavenumbers. The peaks associated with the primary
mode and first harmonic are retained due to the generated
baroclinic torque which persists downstream of the vortex
pair (Fig. 12). Although the spatial structure at this late
stage differs signficantly from the unstratified flow, the be-
havior of the energy spectrum is similar. In regards to the
breakdown of the flow, the counter-rotating vertical struc-
tures enable an additional mechanism of fluid exchange in
the transverse direction. This is observed in Fig. 12b which
shows axial vorticity (wy > 0) from the left vortex trans-
ported to the right side both at the leading edge (extraction
by right vortex) and above the vortex oval (by secondary
vertical structure). In addition, there is detrainment of the
primary vortices by the secondary baroclinic vortex struc-
tures on the downstream side. These additional mechanisms
of vortex breakdown result in a more rapid decay of the the
vortex pair in the stratified flow (Fig. 5).

Summary and Conclusions

The effect of stably stratification on the development of
the short-wave instability and subsequent decay of a counter-
rotating vortex pair is investigated using DNS. A range of
Froude numbers, 2 < Fr < oo is considered. In the lin-
ear phase, the short-wave instability develops with the same
wavelength and geometric features in both unstratified and
stratified flows. However, an earlier onset and a higher
growth rate are exhibited with increasing levels of stratifi-
cation, This is due to the enhanced strain that occurs when
the vortices move closer together as a result of the gener-
ated baroclinic torque. In the early stages of the nonlinear
phase, the evolution of both unstratified and stratified flows
are controlled by the distinct geometry of the. short-wave
instability. The phase relationship of the initial deforma-
tion results in periodic extraction of outer layer fluid from
one vortex into the other at the leading edge of the vor-
tex pair. This initiates the vortex breakdown process in
the unstratified flow. The azimuthal vorticity in the outer
layers of the primary vortices are amplified due to the extern-
sional strain at the leading stagnation point and transverse
secondary vortex structures are formed. In the stratified
flows, effects of baroclinic torque inhibit the formation of
the transverse structures. Alternatively, amplification of the
azimuthal vorticity in between the primary vortices leads to
the formation of vertical vortex structures. This establishes
an additional mechanism of exchange of fluid in the trans-
verse direction. Detrainment of the primary vortices by the
generated baroclinic torque also contributes to the break-
down of the vortices. These additional mechanisms lead to
a more rapid decay of the the vortex pair in the stratified
flows.
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Figure 5: Time development of conditional vortex circula-
tion, (T')w,, (conditioned by wy > 0).
Figure 2: Time development of vortex circulation, T'.
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t* = 18.0

Figure 6: Three-dimensional visualizations of isosurfaces of
second invariant of velocity gradient tensor, I for Fr = 0o
at times t* = 10.5,12.0,13.5, 15.0, 16.5, 18.0.

Figure 7: Three-dimensional visualizations of isosurfaces of
second invariant of velocity gradient tensor, IT for Fr = 2
at times t* = 5.25,6.0,6.75, 7.5, 8.25, 9.0.
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Figure 8: Vortex separation distance as a function of time.
Figure 11: Evolution of perturbation energy of most ampli-
fied mode, k = kmaz.

Energy Spectrum

wave number k

Figure 9: Kinetic energy spectrum for F'r = oo.
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Figure 12: Contours of axial vorticity, wy, in £ — z plane
wave number k for a. Fr = oo at t* = 13.5,15.0, 16.5 and b. Fr = 2 at
t* = 6.0, 6.75, 7.5 (solid: wy > 0, dash: wy < 0).
Figure 10: Kinetic energy spectrum for Fr = 2.
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