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ABSTRACT

Direct Numerical Simulation (DNS) has been carried out
to investigate the effect of weak rarefaction on turbulent flow
characteristics in microchannels. Knudsen numbers of the
simulated flow are selected to be 0.0(un-rarefied), 0.001,
0.005, 0.01 and 0.02 respectively. Validity of the calculation
is demonstrated by the combination of presenting the data of
two-point correlation functions and one-dimensional power
spectra and comparing the results with available reported
results. Turbulent statistics including mean streamwise
velocity, turbulent intensities and Reynolds shear stress are
investigated under the rarefied conditions. It can be
concluded that the weakly rarefied turbulent flow has higher
streamwise velocity over the whole channel width.
Rarefaction can also lead to higher turbulent intensities and
higher Reynolds shear stress in the vicinity of the wall.

INTRODUCTION

In relation with the rapidly expanding application of micro
scale devices in industries, momentum and heat transfer in
micro channels becomes an important research subject.
However, there exists inconsistency among the reported
experimental data on the friction coefficient measured in the
micro-channels. Some data show the decrease of the friction
coefficient (Pfahler et al. 1990,1991; Choi et al. 1991;
Harley et al. 1995; Araki et al. 2002), but others show the
opposite direction of the change (Wu and Little, 1983; Mala
and Li, 1999; Du et al. 2000). These inconsistent results
indicate the necessity of detailed studies for the fluid flow in
micro-channels.

Rarefaction effect is an important influential factor that
must be taken into consideration in the study of micro-scale
fluid flow and heat transfer (Pfahler et al. 1991; Choi et al.
1991; Pong et al. 1994; Harley et al. 1995; Beskok et al.
1996; Arkilic et al. 1997, Kavehpour et al. 1997; Beskok and
Karniadakis, 1999; Araki et al. 2002). Rarefied flows can be
characterized by the Knudsen number Kn, defined by
Kn=A4/L , where 1 is the mean-free-path of fluid
molecules and L isa characteristic length of a system. The

value of Knudsen number reflects the degree of rarefaction
and therefore determines the conditions where the continuum
model holds. Four different flow regimes can be identified
with the value of Knudsen number as follows (Tsien, 1946):

» Continuum flow regime: Kn<107?

» Slip flow (slightly rarefied) regime: 107 < Kn <10~

* Transitional regime: 107 < Kn<10

* Free molecular flow regime: Kn>10

The breakdown of the continuum approximation occurs at
Kr>0.001. On the other hand, Knudsen number can be
rewritten as Kn~ M /Re, where M is the Mach number,
and'Re is the Reynolds number of the flow. Based on the
suggestions reported in the references that the transition from
laminar to turbulence can occur at the Reynolds number as
low as 350~900 (Wu and Little, 1983) and supersonic flows
can be realized in micronozzles (Ayon et al. 2001), turbulent
flows in the slip flow regime can be established in a small
size channel. However, up to now, no literatures have been
found yet on scrutinizing the rarefied turbulent flows in
microchannels.

The present study aims at studying the behavior of
gaseous turbulent flows in slip flow regime. For such kind of
flows, it is popularly accepted that Navier-Stokes equations
are still valid but slip boundary conditions should be
introduced to account for the effect of rarefaction. In this
paper, direct numerical simulation is made for the slightly
rarefied turbulent flows in a parallel channel and the
particular study is made on how the turbulent statistics are
affected by the introduction of slip velocity at the wall
boundary. The flow is treated in this study to be locally
incompressible and rarefaction progressing in the
computational domain is treated negligible.
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COMPUTATIONAL DETAILS

The computational domain and coordinate system adopted
are shown in Fig. 1, where L., L,, L, are set to be
2.576,28 and 1.0z75 (& the half height of the channel)
respectively. Flow is supposed to be fully developed so that
it is statistically homogeneous both in streamwise and
spanwise directions. Periodic boundary conditions are

therefore used both at streamwise and spanwise boundaries.
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Fig.1. Computational domain

Governing equations are the mass and momentum
conservation equations for incompressible fluid flow. With
the friction velocity u, as the reference velocity and the
viscous lengthscale &, as the reference lengthscale, they
can be written in non-dimensional forms as follows,
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where Re, the Reynolds number based on friction velocity,
or friction Reynolds number, F/Re, the pressure gradient
to drive the flow and the value of £ equals to unity under the
adopted normalization.

Rarefaction effects are taken into consideration by
employing the following slip flow conditions for the velocity
components in x and z directions (Kennard, 1938),

N
U =k, Re,2Y )
wall ay*'
wall
.
W*  =o0K,Re, w 6)
wall ay*

wall

where o represents the momentum accommodation factor,
As is popularly accepted in various engineering applications,
o is assumed to be unity here.

Table 1: Computational conditions.

Kn= Kn= Kn= Kn= Kn=
0.0 0001 0005 001 002
Re, 150
L./6 785 (2.57)
L 16 314 (1.07)
nu(r}nr}i)%rs 64x127x64 (inx, y, z)
Ax* 18.4
4" 0.170-9.24
Azt 7.36
At 6x107 7.5x107

Average 4800 4500 4500 4500 4500
time span

For simplicity, superscript + will be dropped for
non-dimensional velocity components and non-dimensional
pressure hereafter in the text and figures. Therefore, in later
discussions, U , V , W stand for non-dimensional
instantaneous velocity in x, y, z directions, respectively, and
P represents the non-dimensional fluctuating part of the
pressure. <U>, <V >, <W> denote the time mean
values of U, V , W, respectively, and u, v, w
represent the fluctuating partof U, V, W, respectively.

Computation code is written with the finite volume
method (Matsubara et al. 1998). Computations are carried
out on a staggered grid system for a frictional Reynolds
number of 150. Grid points in x-, y-, z- directions are 64, 127,
64 and the dimensionless gird spacing in x- and z- directions
are 18.4 and 7.36 respectively. Non-uniform meshes are
used in the transverse direction with the minimum spacing of
0.17 for the first grid point away from the wall and the
maximum spacing of 9.24 at the centerline of the channel.

For the numerical procedure, fractional time step or time
splitting method (Kim and Moin, 1985) was employed for
the time dependent term of N-S equations.  Implicit
Crank-Nicolson scheme was applied for the viscous term and
explicit Adams-Bashforth scheme was applied for other
terms. All spatial derivatives in N-S equations were
discretized with fourth-order central difference scheme.

Computation was conducted under five different Knudsen
numbers, that is, Kn=0.0 (normal or un-rarefied case), 0.001,
0.005, 0.01 and 0.02. Statistical results are obtained by
averaging the instantaneous data over the time span of about
4500. Detailed computational conditions are listed in Table 1,
where smaller time step was used in the rarefied flow cases
to enhance the numerical stability.

VALIDATION :

Examples of two-point correlations and energy spectra at
the location of »™ =5.1 are shown in Fig. 2 and Fig. 3 to
illustrate the adequacy of the computational domain and the
grid resolutions. To make the figures clear to read, only the
data under K#»=0.0 and Kn=0.01 are presented.
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In Figs. 2(a) and 2(b), the two-point correlations in the x-
and z- directions show that they fall off to values close
enough to zero for the largest separations, indicating that the
size of the computational domain is sufficiently large. In
Figs. 3(a) and 3(b), the energy spectra in streamwise and
spanwise directions are plotted separately, where k, and
k. are the wavenumbers in x- and z- directions, respectively.
It can be concluded that the grid resolution is adequate for
the computation, since the energy density associated with the
high wavenumbers is several order of magnitude lower than
that corresponding to low wavenumbers, and there is no
obvious energy pile-up at high wavenumbers.

For the validation of the accuracy of the present
calculation, DNS database of Kasagi et al. (1992) for an
un-rarefied turbulent channel flow of Kn=0.0 isused as a
reference for comparison. In the computation for the
database, the pseudospectral formulation of the momentum
equations is implemented, therefore, the numerical quality of
the database is believed to be high enough to use as a
reference. Figures. 4(a) and 4(b) show the transverse profile
of the streamwise time-mean velocity <U> and the square
root values of the three components of Reynolds normal
stresses (u,,,, =<u’ >'"*) obtained for the normal case of
Kn=0.0 with the equivalent database of Kasagi et al. The
present results obtained with the finite difference approach
allocating the above mentioned in-excessive number of grid
points agree quite well with Kasagi’s data, which justifies the
validity of the present calculation.

RESULTS AND DISCUSSION

Streamwise Mean Flow Velocity

Figure 5 shows the transverse profiles of streamwise
mean-velocity, <U>, for all the cases of different level of
rarefaction or different Knudsen numbers. Illustration is
made separately for the near wall region 0 < y" <30 in(a)
and for the outer region 30< y* <150in (b), respectively. It
is found that rarefaction shows its effect throughout the
whole channel width, where the increase of the Knudsen
number accompanies the increase of the streamwise
time-mean velocity or the increase of flow rate. In other
words, keeping the flow rate, friction loss becomes smaller
as the effect of rarefaction. The relationship between <U>
and " remains nearly linear for all the computational
conditions in the region of y* <5, whereas in the region of
5<y" <30, the relationship deviates from linearity a little
by little toward the core region and difference in the mean
velocity among the cases of different values of Knudsen
number also decreases gradually. In the core region of
¥* > 30, difference in the streamwise velocity related to the
difference of Knudsen number distributes almost uniformly.

Turbulence Intensities

Figure 6 illustrates the transverse distribution of square
root values of the three components of Reynolds normal
stresses. Illustration is made again separately for two regions,
0<y" <20 and 20< y* <150, respectively. It is clearly

seen that higher Knudsen number leads to higher values of
U,,, and w,, in the near-wall region of y* <15. The
values of u,, and w,, are no longer zero at the wall
and can reach as high as 0.9 and 0.3 under the rarefied
condition of Kn =0.02. The result can be attributed to the
smaller restriction of the wall or the introduction of slip flow
boundary conditions. However, the effect of rarefaction on
U and w,,  diminishes outward. Though the values of
V,ms are zero on the wall under all computational conditions,
they have slightly higher values in the region of
0<y™ <50 for higher Knudsen numbers.

Reynolds Shear Stress

Figure 7 presents the transverse distributions of the
Reynolds shear stress < -—uv > under different Knudsen
numbers. Also shown in this figure are the total shear stress
<-uv>tr,, where Ty is the viscous shear stress and is
defined as r,, =0<U>/dy" . Again, the results are
illustrated in two separate figures, one for 0< y* <30 and
another for 30< y* <150, respectively. It is reasonable to
see that the total shear stress takes in every case the value of
unity at the wall and that its distribution does not vary with
the change in the Knudsen number. This is because the
friction acting on the wall should remain unchanged with the
change of the Knudsen number when friction Reynolds
number is fixed constant. However, the Reynolds shear stress
becomes larger and thereby the viscous shear stress becomes
smaller for higher Knudsen numbers in the near wall region
of 0<y” <30. The latter suggests that rarefaction plays an
important role in this region, where velocity gradient
decreases while the velocity itself increases with an increase
of the Knudsen number as pointed out in the above.

CONCLUSION

DNS was carried out to study the effect of rarefaction on
the turbulent flow behavior in a microchannel. Statistical
characteristics studied in this paper are streamwise mean
velocities, turbulent intensities and Reynolds shear stress. It
can be concluded that,

1) Rarefaction can lead to higher streamwise mean
velocity throughout the channel;

2) Rarefaction effect on the turbulent intensities is
noticeable in the near wall region. Higher values of u,,,
and w,,, are observed in the cases of higher Knudsen
numbers in the region of y* <15, while slightly higher
values of v, are observed in a wider transverse range of
0<y* <50 forrarefied flows.

3) The total shear stress remains unchanged regardless to
the degree of rarefaction if the friction Reynolds number is
kept constant. However, higher values of Reynolds shear
stress and thereby lower values of viscous shear stress occur
in the near wall region of 0<y* <30 by the introduction
of slip flow boundary conditions.
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FIG. 2. Two-point correlation coefficients; (a) streamwise; (b) spanwise
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FIG. 3. One-dimensional energy spectra; (a) streamwise; (b) spanwise
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F1G.4 Comparison with the available database; (a) streamwise mean velocity; (b) turbulent intensities
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FIG. 5 Streamwise mean velocities under rarified conditions; (a) in the region of 0< y* <30; (b) in the region of
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FIG. 6 Turbulent intensities under rarified conditions; (a) in the region of 0< y* <20 (b) in the region of 20< y* <150
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FIG. 7 Reynolds shear stress under rarified conditions; (a) in the region of 0< y* <30; (b) in the region of 30< yt <150
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