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ABSTRACT

We derive a rigorous upper bound for the long time av-
eraged vertical buoyancy flux for stably stratified Couette
flow: i.e. the flow of a Boussinesq fluid confined between
two parallel horizontal plates, which are maintained at a con-
stant (statically stable) temperature difference and driven at
a constant relative velocity. We find that the upper bound
Bmax does not depend on the overall or bulk Richardson
number of the flow. We show that Bmax has the same char-
acteristic scaling as the mechanical energy dissipation rate.
This implies that the mixing efficiency (or flux Richardson
number) is independent of both Reynolds number and bulk
Richardson number for such optimal flows, or equivalently,
that there is a generic partition of time-averaged turbulent
dissipation of kinetic energy and vertical buoyancy flux.

I. INTRODUCTION

Flows where both the mean horizontal velocity and mean
density distributions vary with height, (i.e. stably stratified
shear flows) are ubiquitous in the environment. A particu-
larly important question is how, and how much turbulent,
inherently small scale motions cause “mixing”, and so irre-
versibly modify the density distribution. Such irreversible
mixing processes lead to transport of heat and/or salinity
within the atmosphere or ocean. The parameterization of
such transport is at the heart of the appropriate modelling
of heat, salinity and momentum budgets in large scale mod-
els of geophysical flows. There has been a wide range of
research trying to gain a detailed understanding of mixing
within stratified shear flows in general (see, for example, Fer-
nando, 1991; Peltier and Caulfield, 2003). It would clearly
be useful if constraints or bounds could be found for the rate
of mixing, (or equivalently the long time averaged buoyancy
flux) within stratified shear flows, and that is the principal
objective of the research which we report here.

Previous attempts to construct bounds on mixing have
focussed on using semi-empirical scalings and closure as-
sumptions for the turbulence within a stratified shear flow, in
particular through heuristic relationships between the buoy-
ancy flux and appropriate averages of the turbulent kinetic
energy and density fluctuations within the flow (Townsend,
1958; Monin and Yaglom, 1971; Turner, 1973). Our re-
search reported here (see Caulfield and Kerswell, 2001 for

a fuller description) attempts to consider the same problem
in a completely different, and fundamentally rigorous man-
ner. We use the variational “background formulation” due to
Doering and Constantin (see Doering and Constantin, 1992,
1994, 1996; Constantin and Doering 1995). This formulation
critically relies on an insight due to Hopf (1941), and so, fol-
lowing Plasting and Kerswell (2003), it seems appropriate to
refer to the method as the CDH method. The CDH method
uses a non-unique decomposition of both the velocity and
density distributions into a steady “background” that sat-
isfies the actual inhomogeneous boundary conditions of the
flow, and a “fluctuation” away from this background with
homogeneous boundary conditions. (It is important to stress
that the background should not be confused with the hori-
zontal average of the flow.)

To develop rigorous bounds on the long time averaged
buoyancy flux, we consider a simple model flow: namely
plane Couette stratified shear low. In this project we aim
to generate two distinct bounds. As reported here, (and
also, in a different way, in Caulfield and Kerswell, 2001)
we generate the first bound analytically by restricting our
consideration to a simple class of possible background flows
consisting of piecewise linear profiles. We aim to gener-
ate the second bound numerically as a solution of the full
one dimensional problem, generalizing to stratified flows the
methods discussed in Plasting and Kerswell (2003), using
appropriate continuation techniques. This paper is orga-
nized as follows. In Section II, we discuss the flow under
consideration, and formulate the CDH problem. In Section
III, we present the first bound generated by restriction of
our consideration to piecewise linear profiles. In Section IV,
we draw some conclusions, and briefly signpost preliminary
calculations towards determining the second, better bound
for general background profiles.

. PROBLEM FORMULATION

We consider stably stratified Couette flow. We consider a
layer of incompressible viscous fluid that is sheared between
two infinite parallel plates located at z = :t%d which are
moving with velocities :{:%AU X respectively. Stable stratifi-
cation is enforced within the flow by maintaining the plates
at constant but different temperatures so that there is a sta-
ble density difference across the layer of Ap: see figure 1. We
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Figure 1: Schematic flow geometry, with the imposed (con-
stant) boundary conditions.

adopt the Boussinesq approximation and use the plate sepa-
ration d, a characteristic density po (where Ap/pg < 1) and
the diffusive timescale d?/« (x is the thermal diffusivity) to
non-dimensionalize the governing system of equations, which
become

17}
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where p is the (nondimensional) difference from pg (scaled
by Ap) of the density. The boundary conditions are now
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The control parameters of this system are thus the Reynolds
number Re, the Prandtl number o and the (bulk) Richard-
son number J, defined as:

AUd v gApd
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€ v 7Tk po(AU)? ©

In these expressions, g is the acceleration due to gravity and
v is the kinematic viscosity.

We define appropriate averages of a spatially varying
quantity ¢ as

1/2
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As discussed more fully in Caulfield and Kerswell (2001),
provided the velocity and density fields are initially square
integrable, straightforward manipulation of the governing
equations yield certain balances:
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i.e. kinetic energy balance, entropy flux balance, and poten-
tial energy balance respectively, where

op
z=1/2 0z

3
vl = ) |vul? (11)

Although we are interested in maximizing averaged buoy-
ancy flux B:

t
1 .
B := lim ;/ o2 Re*J{pus) di (12)
0

it is more convenient to calculate an upper bound on the
purely quadratic quantity

t
1 .
B+ d?Re?J = lim »/ o2 Re?J(|Vp|?) di (13)
t—roo 0

using (9) and (10) at fixed o, Re and J. Therefore, we con-
sider the Lagrangian functional £:

t
L = lim%/ [0 Re?J(|Vp|?) (14)
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where (N) and (D) are the Navier-Stokes equations and the
density equation (1) and (2) respectively.

The CDH method requires the Lagrange multipliers v
and 0 to be linked to the physical fields u and p in a specific,
though non-unique way:

u(x,t)
p(x,1)

B(2)% + v(x,t) (15)
7(z) + 0(x,t) (16)

where the “background” fields ¢ and 7 and the “fluctuation”
fields v and @ satisfy the respective boundary conditions:
oRe 1 1
¢_:F—2— 'r_:FZ v=0 9_0atz._:l:§ 17
a decomposition due to Hopf (1941).

Since v and 8 are directly related to u and p, (14) actually
imposes only mean momentum balance, total power balance,
entropy flux balance and the mean heat balance (with La-
grange multipliers —a¢, a, 02 Re?Jb and —o? Re? Jbr respec-
tively), rather than the complete Navier-Stokes equations (1)
and the density equation (2). (This is a very important is-
sue for the application of our calculations, which we return
to in the last section.) Since this problem is mathematically
well-posed, we drop time averages, and so wish to bound the
functional

L{a,b,T,¢;v,0) = U2Re2J<T'2> (18)
—g(a,b,T,¢;V,9)
¢ = ao{|Vv|?) (19)
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where () = £().

A critical point about the Hopf decomposition is that,
if the background fields (and also, if possible the Lagrange
multipliers a and b) can be chosen so that £ is maximized
over all possible fluctuation fields, then this value of £ must
correspond to a rigorous upper bound on B, since it must be
possible to construct any realizable flow u and p by appro-
priate choice of the fluctuation fields. If we are then able to
minimize the maximum over all ¢ and 7, we then will have
constructed the best possible upper bound. (See Kerswell,
1998; Plasting and Kerswell, 2003 for a further discussion of
this critical point.) As mentioned in the Introduction, we
are ultimately interested in the construction of two different
bounds. The first bound (mainly discussed here) is conser-
vative, in that we restrict attention to a sufficiently simple
class of background and fluctuation fields so that analyti-
cal progress can be made, whereas the second bound uses
numerical continuation techniques to consider all possible
background and fluctuation fields.

In either case, necessary conditions for £ to have an
extremum of £ is that £ satisfies five Euler-Lagrange equa-
tions: with respect to the Lagrange multiplier b; the horizon-
tally averaged fluctuation fields o; and #; and the meanless
fluctuation fields ¥ and 6, (where ¥ = 0, § = 0) which take
the form:
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We can solve (21) and (23) directly to yield

v = —%(q& + oRen)% (25)
7 _ (b-2)
6 = TR 1)(T+Z) (26)

Since, as shown in Caulfield and Kerswell (2001), the
limit b — 1 is of interest, we use (26) to eliminate 7 from
(20), eventually obtaining

(bb_zz)<(é')2> = ~6-2(|vi[") ~a(asd)en

after eliminating the cubic term (§'936) by calculating
(6.(24)).

This equation can be substantially simplified by combin-
ing the conditions for entropy flux balance (9) and potential
energy balance (10), which in terms of the optimal fluctua-
tion fields can be expressed as

2 (0)’)
i3f) = L4 <[vé[2> (28)
(os (b~ 2)2

using the fact that the homogeneous boundary conditions
for 6 imply that (§') = 0. Provided <1739> is non-zero, con-
sistency of (28) and (27) requires that there is a very simple

relationship between the two Lagrange multipliers, i.e.
b = (2-a) (29)
Therefore, (22) and (24) become
03
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and the functional £ defined in (14) becomes

r = (2- G)Z(zl —a)o <(§/)2> + o2Re2J (32)
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For £ to actually have an upper bound, the “spectral con-
straint” must be satisfied, i.e.

’Hqﬁ,r,a(("é) 2 0 3 (34)

where the fluctuation fields § and ¥ are arbitrary, subject
only to the requirements that they must satisfy homoge-
neous boundary conditions at z = +1/2, and that ¥ must
be incompressible. Clearly, a necessary condition for the
spectral constraint to be satisfied is for 0 < a¢ < 1.

As is conventional in problems of this type, (30) and
(31) imply that # is exactly zero for all fields correspond-
ing to stationary points of £. However, it is only at the
unique maximum of £ that the spectral constraint can be
satisfied for all incompressible velocity fields ¥ with homo-
geneous boundary conditions. Therefore, we can determine
that the upper bound of interest is

L Lmax = &‘La(zl'l)a <(0-,)2> (35)
ac

+0%Re?J + - ((¢' + oRe)?)

where ¥ and § satisfy the Euler-Lagrange equations (30) and
(31), and a, ¢ and § are chosen to minimize (35) while still
satisfying the spectral constraint (34).

Il. A RIGOROUS BOUND GENERATED USING PIECE-
WISE LINEAR PROFILES

To make analytical progress, two strong assumptions are
made. Firstly, rather than trying to find non-trivial so-
lutions to the Euler-Lagrange equations (30) and (31) for
the meanless fluctuations ¥ and é, we conservatively se-
lect the background fields to enforce these fluctuations to
be exactly zero. Since any choices of ¢, 7, (and hence §)
and a that are consistent with the spectral constraint con-
struct a rigorous upper bound on the buoyancy flux, we will
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Figure 2: Mean profiles of along-stream velocity, (solid line)
density, (dashed line) and gradient Richardson number (dot-
dashed line) for the piecewise linear bounding solutions. (We
have exaggerated the depths of the boundary layers.) No-
tice that the interior of the flow is well-mixed, and that the
gradient Richardson number attains a very small value at
the boundaries.

still construct a (conservative) rigorous bound under this
assumption. Secondly, rather than minimizing Lmax over
all possible a, ¢ and 8, we initially construct a bound us-
ing analytically tractable background profiles. Considering
the physical picture of the flow shown in figure 1, a sensi-
ble strategy (favoured in previous studies by various authors:
Doering and Constantin, 1992, 1996; Nicodemus et al., 1997)
is to confine strong gradients to relatively thin boundary lay-
ers. Combining this physical idea with the requirement for
ease of manipulation suggests the use of piecewise linear pro-
files, with three different regions within the flow, as shown
schematically in figure 2, which shows the mean profiles in
both velocity 4; = %1 + ¢ and density p =8 + 7.

There are linear boundary layers for both the velocity
and density of depth d, and §, respectively, and so the gra-
dients of ¢ and § take the form

ot §-s<as)
¢ = 0 MS%_‘;I} (36)
~5 —3<2<-1+4
1 1
B _2(2—aa)(sp+ﬁ 30 <z<3
v = 22 l2l< 3-8 (37)

1 1
~amay, T ima "3 S7<-3+0

These fields are chosen in this form so that the depths of the
boundary layers (i.e. d, and d,) can be varied to satisfy the
spectral constraint. In particular, we choose these forms so
that, throughout the interior of the flow, the sign-indefinite
terms in (33) are zero.

Therefore, as discussed in detail in the work of Doering
and Constantin, (1992, 1996) the sign-indefinite terms can
be bounded simply using functional estimates:

<a¢'61 D3 > <
ao Redy,
8v2

)
2(1 — a)o?Re?J < [(2—;—“29" - 1] ﬁ39>

E=e (LG9 + 5 (917) )

where d > 0 is a free positive constant. Using these ex-

(IIwo)?
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pressions, we see that a sufficient condition for the spectral
constraint (34) to be satisfied is that

2d
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8v2 8

Clearly (38) is satisfied for d > d,/2. We relate the
depths of the two boundary layers directly by requiring the
balances (8)—(10), to obtain

(1—a)(1—5—”) > 0 (38)

v
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— 4 -
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Therefore, (39) simplifies to
2 7352(1 _
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= — — 42
e T @

From (42) it is clear that Lmax is minimized when §, is
maximized, which further implies that the critical situation
applies when there is equality in (41). Differentiating with
respect to a, we can show that §, attains its maximum value
when ¢ — 1, and

8v2
by = — 43
v Re (43)
so that
o3 Re? 16v2 95 2
Lmax = 1——— | +0°Re“J 44
Y ( Re (“44)

Therefore, the long time averaged buoyancy flux B as
defined in (12) is bounded by

o3Re® 16+/2
B < B = 1- 45
g max 64\/5 Re ( )
and so the dimensional buoyancy flux B is bounded by
L (AU)3 16v2
B < Bmax = 1- 46
=TT 64v/2d Re (46)

Crucially, this bound is completely independent of the bulk
stratification and diffusion within the flow, only depending
on the advective scales of the velocity field. This is not en-
tirely surprising, since the kinetic energy balance equation
(8) implies that the mechanical energy dissipation and the
buoyancy flux have the same scaling, and it is well-known
(see Doering and Constantin, 1992; Plasting and Kerswell,
2003) that at high Re the mechanical energy dissipation
scales like AU3/d. Also, since the bounding value of the
Lagrange multiplier a — 1 leads to a decoupling of the den-
sity and velocity fields, as is apparent in the expressions for
£ and H in (32) and (33), the buoyancy flux should cease
to depend directly on J. Indeed, if b = 2 —a = 1, the
Euler-Lagrange equation for § (23) implies that 7 = —z, i.e.
the appropriate background density field corresponds to the
laminar conductive state, and the interior of the flow should
be completely well-mixed, as shown in figure 2.

It is very important to appreciate that although the up-
per bound on B is independent of J, the structure of the
bounding flow itself does depend on the overall stratifica-
tion. In particular, from (40) and (43), d, increases with J,
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so that the mixed layer in the flow interior must reduce in
depth as J increases. This also means that the gradient in
density near the boundaries z = :b% must decrease as J in-
creases. This has significant implications for the structure of
the gradient Richardson number Ri(z), which is the natural
measure of the relative significance of buoyancy and inertia
(see e.g. Turner, 1973) and may be defined in terms of the
nondimensional variables of this paper as
Ri(z) := —o?Re2J P (gﬂ) - (47)
dz \ dz
We also plot a generic profile for Ri(z) for the bounding
profiles in figure 2. Because of the particular form of the
bounding solutions, we can show that

8762
5p(1 + 26,)2
16v2 [0 (Re - 16v2) + 4J]
(Re + 16v/2)2

1620
Re

Ri(+1) (48)

as Re — oo

establishing that the Richardson number at the boundaries
is both independent of J to leading order, and also that
it becomes extremely small for large Re. Therefore, as is
commonly assumed for forced, steady stratified turbulence
(see Turner, 1973) the flow has created regions where the
stratification is extremely weak, and the density does not
dynamically affect the flow evolution, thus allowing mixing
to be sustained.

Similarly, it is also straightforward to calculate the dissi-
pation of the solution that has been determined to construct
an upper bound on the buoyancy flux. Using the bounding
solutions, it is straightforward to show that, for piecewise
profiles of the form assumed

o (Ivu?) = @[Hs(su}

4 20y (49)

Therefore, for the bounding solutions, with boundary layer
depth defined by (43),

a(Ivul®) =

7 Be! {1 ¥ MJ (50)

64v2 Re

This is of particular interest, since an important quantity
for parameterization of mixing within a stratified flow is
the “mixing efficiency” (sometimes referred to as the “flux
Richardson number” Rif) of the flow: the ratio of the long
time average of the buoyancy flux to the sum of the buoyancy
flux and the mechanical energy dissipation. This quantity
is a measure of the proportion of the work done on the flow
that is leading to irreversible changes in the potential en-
ergy of the fluid (see Peltier and Caulfield, 2003 for a more
detailed discussion). For the bounding solution, combining
(45) and (50) yields

Rij = — fe_ (51)

which tends to 0.5 as Re — 00, implying equipartition .of
energy loss from the shear through dissipation and buoyancy
flux for such bounding solutions.

Although this is very high compared to typical observa-
tions (see e.g. Park et al., 1994) and simulations (Peltier and
Caulfield, 2003) which suggest that Riy ~ 0.1-0.2, heuristic

models (Townsend, 1958; Monin and Yaglom, 1971;, Turner,
1973) have previously suggested 0.5 as an upper bound for
mixing efficiency. These models also rely on the idea that
there are regions of flow where the local gradient Richardson
number is very small (see figure 2) which certainly occurs
in the bounding solutions. Further reasons to think that
there is a possibility of high mixing efficiency events have
come from recent laboratory experiments and atmospheric
observations of Fernando and his co-workers (Strang and
Fernando, 2001; Pardyjak et al., 2002). They also cbserved
flows, which under certain circumstances, had mixing effi-
ciencies as high as 0.45. Therefore, it seems at least plausible
that it is possible to have flows with significantly higher mix-
ing efficiency than is commonly assumed to occur, which
may have significant implications for parameterization of
mixing within larger scale models using mixing efficiency
estimates. (See Caulfield and Kerswell, 2001 for a more de-
tailed discussion.)

V. DISCUSSION AND CONCLUSIONS

The long time averaged flow that we have derived in this
paper appears to make rigorous an argument for explaining
the possibility of mixing that is independent of bulk strati-
fication within the flow, and scales in the same way as the
mechanical energy dissipation. This implies that, at high
Reynolds number, the flux Richardson number will remain
finite. Appropriately interpreted, this observation is consis-
tent with both heuristic models, and recent observations. In
particular, it suggests that conventional estimates of mixing
efficiency around 0.1 — 0.2 may be too small as a general
result, and may actually be specific to the classical flows
that have been considered (e.g. grid stirred turbulence as in
Park et al., 1994; or KH instability break down as reviewed
in Peltier and Caulfield, 2003).

However, we need to proceed with caution in such ex-
trapolations for (at least!) five important reasons. Firstly,
there is no reason to suppose that real flows actually do
maximize buoyancy flux. Secondly, it is not at all clear that
any results we identify from this specialized Couette flow
can (or should) carry over into generic statements about
stratified shear flows. Thirdly, even if we can generalize, the
bound we have constructed using these piecewise linear pro-
flles is not the best possible bound, and it is necessary to
construct the best possible bound over all possible choices
of background profiles, and indeed, nontrivial meanless fluc-
tuations to draw broader conclusions. Fourthly, even if the
best possible bound is generated, it is not clear that the
bound is “realizable”, or attained by flows that actually sat-
isfy the Navier-Stokes equations. Due to the relationship
between the fluctuation v and the actual fluid velocity u,
we actually optimize over a class that is a superset of the
solutions to the true governing equations (1)-(3). As is well-
known for the unstratified Couette flow, (see Plasting and
Kerswell, 2003 for a fuller discussion) the mean flow distri-
butions that are determined by generating an upper bound
for the mechanical energy dissipation do not, in point of
fact correspond to experimentally observed flows, in par-
ticular because of the continued presence of non-zero shear
in the interior of the flow to asymptotically large Reynolds
number. This structure (see figure 2) also persists in our
stratified flow, thus calling into question whether the flows
calculated here could actually be sustained in a real fluid.
Finally, even if all these other problems are addressed, it
is important to remember that we are only attempting to
maximize the buoyancy flux. It is unclear how meaningful
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the associated value of the mixing efficiency for such solu-
tions is, as the particular value of the dissipation for these
optimizing solutions is not constrained in an obvious way.

It is an ongoing research activity to address all of these
concerns. For example, we are actively attempting to calcu-
late the best possible bound for this flow, by generating a
second bound numerically as a solution of the full one dimen-
sional problem numerically using appropriate continuation
techniques. We aim to present the results of this calculation
at the conference. To determine such a bound, it is necessary
to solve the Euler-Lagrange equations (20)-(24) for varia-
tions with respect to b, ¥, ¥, § and é simultaneously with
solving the Euler-Lagrange equations for variations with re-
spect to a, ¢, and T:

oL

o = (1w v?) — (¢'v1vs) (52)
—0?Re*J (v36) + o (¢"v1) =0
[}
;5% = qavjv3 +aovy =0 (53)
i—c = =2 4+ (2~ a);;_;é, —af’ =0 (54)
-

using (29). The manipulation and solution of this system of
equations is the topic of ongoing research.
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