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ABSTRACT

Time series measurments of velocity and vorticity using a
four sensor hot-wire technique have been acquired in a large
scale single stream shear layer. The Reynolds stress gradient
which appears in the time averaged momentum equation can
be written in terms of the velocity-vorticity products. The
experimental data allows for the evaluation of these quantities,
and the spectral content of the time series provides insight into
the scales of motion which lead to the time averaged values.

The power spectral density function for the vorticity time
series (@, oy) show substantial values at a wide range of wave

numbers. The velocity-vorticity products also indicates a wide

distribution in wave number space. This indicates the.

existance of anisotropic motions which contribute to the Rey-
nolds shear stress gradient at wave numbers at both very high
and very low wave numbers.

INTRODUCTION

The Reynolds averaged Navier-Stokes equations can be
written as:

{,?E = 1_2_(-;)8 +2 3‘~--pu' u") (1)
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where S,-j represents the time averaged rate of strain tensor.

The modeling of the Reynolds stress u'i u'j is the subject of

considerable research; see, e.g., Pope (2000) for a review. The
physical mechanisms which lead to the Reynolds stresses are
still a topic of research, since no universal model has been
found that relates these terms to the mean flow variables.
Empirical and heuristic models often encounter problems
when varied physical mechanisms are responsible for the gen-
eration of Reynolds stresses within a given domain.

The single stream shear layer provides an interesting
boundary value problem in which to study the Reynolds
stresses. The only non-zero component of the Reynolds shear

stress tensor is #'v' . This term appears in the boundary layer
form of the momentum equation:

-Ou  -du _ ouv'
eyt = YRV 2
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which, for the flow field considered herein, appropriatly
assumes that the mean viscous stress, pressure gradients, and
streamwise gradients are negligible. The present examination
of the Reynolds stress gradient begins with the identity (again,
ignoring streamwise gradients):

ou'v ~v'm o mt

5 SV Wel. 3)
Tennekes and Lumley (1972) provide an interpretation of this
expression in terms of a pseudo body force which results from
the velocity-vorticity correlations. Equation (3) then indicates
that the net shear stress gradient is a result of contributions
from (or cancellations of) the two velocity-vorticity products.

The subject of this paper is the direct meaurement of the

time series data of the terms of equation 3. This provides a
unique oportunity to observe the scales of motion (in terms of
spectral content) of the gradient of the Reynolds stress.

DESCRIPTION OF EXPERIMENT

A large scale single stream shear layer facility located at
the Turbulent Shear Flows Laboratory of Michigan State Uni-
versity was used for the experiments; see Figure 1. The Rey-
nolds number of the boundary layer at separation is Reyg=4650,
based on the momentum thickness 6(x=0)=0,=9.6mm, and the
constant free stream velocity U,=7.1m/s. The shear layer test
section is 9.7m in length from the separation point to the tun-
nel exit. A low disturbance level entrainment flow is delivered
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through four axial fans to maintain a zero pressure gradient
test section.

Spanwise vorticity measurements were acquired using the
compact four sensor hot-wire probe developed by Foss and
coworkers, see, e.g., Haw et al. (1989) and Wallace and Foss
(1995). A schematic representation of the probe is shown in
Figure 2. The two parallel wires record the magnitude of
velocity with a small (§y~1.4mm) spatial separation. The sen-
sors configured as an X-array are used to recover the v compo-
nent of velocity. From these three signals, a micro circulation
domain is constructed with the flow direction calculated using
a convected distance from the local (in time) velocity magni-
tude. This is shown schematically in Figure 3. The resolution
of the micro circulation domain in the present experiment is
approximately 7 Kolmogorov length scales.

The vorticity probe was traversed across the shear layer at
the streamwise location: x/8,=675. Time series data were

acquired at 40kHz for 50 seconds. The Reynolds number of
the shear layer at this location was Reg=150,000 based on the

local momentum thickness.
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Figure 1. Schematic of the single stream shear layer facility.
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calculate vorticity from the four wire probe.

RESULTS AND DISCUSSION

The time averaged velocity distribution: #(y), exhibits
excellent self-preservation (x/6,>100), see Fig. 4. The mean

velocity field with the assumption of self similarity can be
used to evaluate the non-dimensional Reynolds stress:

h(y)=(1/0)[wv/U’] shown in Fig. 5 along with the
directly measured values. The dimensionless Reynolds stress
gradient: #'(y)=(1/ c)o[u'v/ Ui]/ d(y/0), where 6=d0/dx
and n=(y-y,,2)/0 is shown in Fig. 6.

The detailed observations will be made for the measured
values obtained at x/80=675, n=0 will be used for the present

communication. Several statistics of interest at this location
include (note that [~] indicates standard deviation:

u/U, = 0508, /U, = 0.157,v/U, = 0.118
w/U, = 0136, u'v'/(uv) = 0.413
&\ 4 = 092, 0\, /u = 058

where A is the Taylor microscale.
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Figure 5. Calculated and measured Reynolds shear stress
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Figure 6. Reynolds stress gradient, obtained by fitting and
differentiating the data shown in Fig, 5.

The wave number content of the present measurements
will be used to characterize the physical attributes of this flow
field. The first of these measures is the u-v coherence spectra,
see Fig.7. As shown, a necessary condition for “local isotropy”
is met for kin>0.01. The E;; power spectral density (PSD) is
presented in Fig. 8 with the “best fit” reference curve, obtained
using the procedure of Pope (2000), included for reference.

A more sensitive (pre-multiplied by k,) representation of
the component spectra kiEy(kn) is presented in Fig 9 for y=
1, 2, 3. Note that when spectra are plotted in this form, equal
areas “under the curve” contribute equally to the signal vari-
ance. As expected the E ;; values exhibit the largest magni-
tudes at low wave number.

Fig. 10 presents the pre-multiplied vorticity spectral distri-
butions. Since the area under the curve in this representation is
the normalized mean square vorticity value, the evident differ-
ences in the indicated area reflects the difference in the nor-
malized standard deviations: 0.92 cf 0.58, stated above. The
other noteworthy features of Fig. 7 are:

i) quite similar magnitudes for k;n>0.2,

ii)a peaked w, spectra (at kyn=0.15) is evident whereas the
o, spectra is “nominally invariant” over a wide range ofk,
values.

The velocity-vorticity co-spectral distributions that
directly address the Reynolds stress gradients are shown in
Fig. 11. The v-w, cospectra clearly shows larger values in the
low k; (kjn=0.001) region. These values are essentially

responsible for the larger \E):' value (221 m/sec? or
Gv—'(n_z'/ Uz =0.199) that stands in contrast to the w'(x)y' value

(141 m/sec? or Ow‘my'/ Ui=0.087)‘ The strong similarity of
the pre-multiplied E,;, E33 spectra, in contrast with the differ-
ent low frequency content of the vorticity-velocity spectra,

clearly identify the mechanistic contributors to the Reynolds
stress gradients. Namely, the motions whose ki1 values are of

order 103 primarily contribute to the Reynolds stress gradient.
The scalings used above: [0 and U], result in a non-

dimensional difference for the rhs of Equation 3 as:

%[Jm_;-w'wy'] = 0.199-0.087 = 0.112.

o
This magnitude can be compared with the measured gradient:

o |uv| _
m{?] = 0.0018

The implication of these data is quite apparent. It will not be
feasible to use the rhs of (3) to accurately predict the numerical
value of the Reynolds stress gradient given the intrinsic uncer-
tainties in the measurement, and the ill conditioned nature of
equation (3). That is, the left hand side is several orders of
magnitude smaller than the individual terms on the right hand
side. Therefore any uncertainty in the velocity-vorticity prod-
ucts will result in a difference that is far greater than the true
stress gradient. However, the clearly stated identification of
the wave number range that contributes to this quantity pro-
vides quite useful insight into the mechanistic attributes that
lead to the observed mean velocity field.
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Figure 8. Power Spectral density E;; with model fit from
Pope (2000).
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Flgure 9. Pre-multiplied p ower spectral densities for yy=11
(top curve at km=10‘3), vy=22 for the middle curve at

k1n=10‘3 , and yy=33 for the lower curve.
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Figure 10. Pre-multiplied spectral distributions of the
a=f=w, (upper) and a=P=wy (lower).

sF
13
)

E "\

18] vV

" Vi

b v

8p {

1t !
.; 2 “!"\ /\\ \ I
=z V 1\ i
2o ’A I;'}
E i N \j, V N

[ \ i

08 A AN \/ J

4
A

AU

1;‘ o' o' o
kn

Figure 11. Velocity (a) - vorticity (B) spectra where the

lower curve shows a=Ww, B=w,, and the upper curve shows

a=v, Pp=w, The values of the upper curve are shifted

upward by 0.5 to separate the two distributions.
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SUMMARY

Detailed measurements of the vorticity velocity products

have shown that motions whose scales are ~10n dominantly
contribute to the Reynolds shear stress gradients at the center
of this flow field. This range is one order of magnitude smaller
than the domain where local isotropy could be expected
(H;2=0 at kyn>0.01).
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