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ABSTRACT

The large-scale structures observed at or above the
logarithmic-layer of wall-turbulence were investigated using
Large Eddy Simulation. We have mainly focused on the
Reynolds-number scaling of the large-scales and the influ-
ence of thermal stratification on these motions. The grid
resolution required for the reproduction of the large-scale
structures in plane channels was intensively studied and it
was found that rather higher grid resolution that was suffi-
cient to reproduce the near-wall structures was required to
properly reproduce the large-scale motions. This fact in-
dicates that there would be a strong relation between the
small-scales near the wall and the large-scales in the outer-
layer. The large-scales in the neutral state basically obey
the outer-scaling and their spanwise size was about twice
larger than the boundary-layer thickness independent of the
Reynolds number tested here. The large-scales were also
found to be strongly affected by the thermal stratification
and were suppressed at a certain weakly stable stratifica-
tion tested here, contrarily to the fine-scale structures being
rather insensitive to the thermal stratification.

INTRODUCTION

It has been widely acknowledged that there exist the
large-scale structures in wall-turbulence with the size at least
comparable to the boundary layer thickness. In contrast to
the small-scale structures near the wall, less attention has
been paid to the large scales until recently. Del Alamo &
Jiménez(2001) argued that one of the reason for this rela-
tive neglect went back to Townsend’s first prediction of the
large-scales under the attached eddy hypothesis, in which he
described them as inactive in the sense that they do not
contain Reynolds stress. However recently, Jiménez(1998)
showed from various existing experimental and numerical
data that they were rather active containing substantial
Reynolds stress as well as turbulence energy, which was later
ensured by Direct Numerical Simulation (DNS) conducted
by themselves. Furthermore Hunt and Morrison(2000) re-
cently proposed the top-down structures of wall-turbulence,
in which outer-layer structures affect the near-wall small
scales a lot at very high Reynolds numbers such as observed
in atmospheric boundary layer. In fact, the Reynolds num-
ber dependence of the streamwise velocity fluctuation near
the wall (e.g., DeGraaff, 2000) seems to be explained as the
result of the interaction between the small scales in the inner-
layer and the large scales in the outer-layer.
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On the other hand, increasing attention has been paid to
the development of the artificial wall boundary condition for
Large Eddy Simulation(LES) as one of the practical prob-
lems of turbulence simulation. In this context, the preceding
fundamental argument for the large scales is essential to
properly model the near wall turbulence. Therefore studying
the large scales in the context of such as their origin, inter-
actions with the near-wall structures, or Reynolds-number
scaling is important to understand the structure of the high
Reynolds number wall-turbulence from both fundamental
and practical points of view.

The existence of the large scales has been recognised
mainly by the experimental results of the abnormal extent
of the temporal auto correlation of the streamwise veloc-
ity or the peak of the corresponding pre-multiplied one-
dimensional power spectra at the low wavenumber region.
In addition, Kim and Adrian(1999) recently pointed out
from their measurements of fully developed turbulent pipe
flow the existence of another large scale motions which are
much larger than the ones comparable to the boundary layer
thickness. They called them as wery large scale motions.
From these experimental results, we can suppose the large
scale structures as the streamwise elongated anisotropic mo-
tions similar to the near wall streaks but of the size some
times or even more larger than the boundary layer thickness.
However in experimental studies, one-point measurements
as one of the most popular methods has fundamental diffi-
culty of capturing the spanwise structures. The validity of
the spectrum converted from frequency to wavenumber us-
ing Taylor’s hypothesis for the use of the large-scale analysis
also should be considered carefully.

In addition, the practical difficulty of studying the large-
scale structures lies in the fact that they require the large
experimental setup or the computational domain at suf-
ficiently large Reynolds number to properly capture their
entire structures. This requirement has been the stumbling
block for both experiments and DNS to investigate the large
scales(e.g. Kawamura and Abe, 2002). In this context,
LES seems to be the promising method, in which only the
large and coherent flow structures are directly solved by the
three-dimensional time-marching numerical simulation while
rather isotropic and universal eddies are only modelled.

The purposes of this study are: firstly to examine in-
tensively the grid resolution of LES required to reproduce
the large-scales in fully developed incompressible turbulent
plane channels; secondly to investigate the Reynolds num-
ber similarity of the large scales; finally to see how the stable
stratification affects the large-scales.

Requirement of the excessively fine resolution, which is
sufficient to reproduce the near-wall small eddies, obtained
in the first part of this study unexpectedly reveals that small
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scales near the wall play an important role on the process of
producing the large scales in the outer-layer.

NUMERICAL METHODS

Analysis Models

We have adopted a simple open channel flow, in which
no-slip and free-slip conditions are imposed on the lower and
upper walls respectively, as one of the typical wall-bounded
turbulence. Hereafter streamwise, normal-wall and span-
wise directions are given as z, y and z respectively. The
flow field is considered to be periodic for streamwise and
spanwise directions, and is driven by the uniform pressure
gradient force acting for the streamwise direction to obtain
the fully developed turbulence state. A constant heat flux
is considered on both lower and upper walls with different
values between them. Supposing that gravity acts for the
negative y direction, zero- and negative-flux conditions on
the upper and lower walls respectively are imposed to ob-
tain the stably stratified state. To compensate the heat loss
on the lower wall, fluid considered here is supposed to have
an uniform heat source in the whole flow field, which is simi-
lar to the uniform pressure gradient in the velocity condition
mentioned above(see the similarity of eqs.(2) and (3) shown
below).

These boundary conditions for the velocity and tempera-
ture produce following two important numerical parameters
to be determined a priori. One is the Reynolds number,
Re = u,8/v, and the other is the Richardson number,
Ri, = 3¢Qé/u, in which u-, v, 8,8, g and Q are the friction
velocity at the lower wall, the kinetic viscosity, channel-
width, the volumetric expansion coeflicient, gravitational
acceleration and the heat flux on the lower wall respectively.
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Figure 1: Analysis Model.

Governing Equations

We suppose fluid is incompressible and Newtonian, and
a buoyancy term is modelled by the Boussinesq approxima-
tion. The governing equations of LES adopted in this study
is obtained by spatially filtering the corresponding continu-
ity, momentum and heat transfer equations:
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where Pr is the molecular Prandtl number, which is set to

be 0.7 in this work. Here overbar denotes the grid filtering
operation. The subgrid-scale (SGS) stress in (2) and the
SGS heat flux in (3) must be modelled which is given as
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Subgrid-Scale modelling
In this study SGS stress and heat flux terms are modelled
under the isotropic eddy viscosity assumption:

k
20—
313

k 88
.= —C, —_
% ®315] oz;

1 _
Tij — 38Tl = — Sijs (6)

3

M

where § is a magnitude of the strain rate temsor, S;; =
(aﬁ,'/amj + 3&,~/8m;)/2, and is given as S = /\/25;1‘5',3.
We would like to note that these forms are different from
the famous Smagorinsky’s model, and that the SGS turbu-
lence energy, k, is explicitly included in the eddy viscosity or
diffusion coefficients. The model coefficients, C and Cy, in-
cluded in (6) and (7) are determined following the dynamic
procedure(Germano et al., 1991 and Lilly, 1992). In the dy-
namic procedure, so-called subtest-scale (STS) stress,T;; =
fisi; — B4, and corresponding heat flux also must be mod-
elled. We would like to note that overttlde denotes the test
filtering operation required in the dynamic procedure. Here
the STS stress is modelled on the analogy of the SGS model
given in (6) as follows,
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where K is the STS turbulence energy. The SGS and STS
energy in (6) and (8) are modelled considering the consis-
tency of the numerical (finite difference) error in the dynamic
procedure:
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The notable features of these SGS models are; because of
the consistency of the numerical error in the dynamic pro-
cedure, this model shows less sensitivity to the discrete test
filtering operation than the usual dynamic procedure using
the Smagorinsky’s model. For the detail of the derivation of
these models and their fundamental property in LES, refer
to Tsubokura et al.(2001a) and Tsubokura(2001b).

Discretization

Governing equations are discretized on the staggered
grid system based on the fully conservative finite difference
scheme developed recently by Morinishi et al.(1998). The
fourth-order accuracy is considered for all spatial deriva-
tives except for the SGS terms. It should be noted here
that the fourth order accuracy is determined from a compro-
mise between the higher order requirement for SGS stress
not to be dominated by numerical errors and the lower-
order requirement for non-liner term not to be contaminated
by the aliasing error {e.g., Ghosal, 1996). The third-order
Runge-Kutta method is basically adopted as the time march-
ing method, and the second derivative for the normal-wall
direction included in the viscous term is only treated semi-
implicitly using the Crank-Nicolson method for the tolerance
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Table 1: Reynolds number in the neutral cases of the open
charnmel flows.

Rer = usé/v 395 590 1180
Res =Ugd/v | 81x10° 13x10% 2.7 x 10%

Table 2: Reynolds and Richardson numbers in the stable
cases of the open channel flows.

Rer = uré/v 1180
Rir = $9Q5/ud 045 0.9 27 45
Res = ucd/v(x10%) 3.0 32 41 49
Ris = BgATé/u2(x10-2) | 1.35 256 6.00 8.42

of time increment in the numerical simulation. MAC method
is used for the velocity-pressure coupling and the correspond-
ing pressure Poisson equation is solved by the discrete FFT
method for the periodic direction while the septa-diagonal
method is adopted for the normal-wall direction.

Analysis Conditions

Neutral cases. Wall turbulence in neutral stratification is
studied mainly to investigate the Reynolds-number scaling
of the large-scale motions. Therefore LES at three different
Reynolds numbers ranging from lower to moderate cases was
conducted here. The Reynolds numbers defined by the fric-
tion velocity as an input parameter and their corresponding
bulk Reynolds numbers are summarised in Table 1.

Stable cases. In the stably stratified wall-turbulence,
three Richardson numbers,Ri,, are tested here while the
Reynolds number, Re,, is fixed to 1180. It should be noted
that due to the effect of the thermal stratification, the flow
at the different Rir of the same Re, produces the differ-
ent bulk Reynalds number,Res = ugd/v, where uc is the
bulk velocity. The Re- and Ri, as input numerical param-
eters and their corresponding Res and the bulk Richardson
number Ris = gAT§/u?, are summarised in Table 2. In
all stable conditions tested here, obtained bulk Richardson
numbers are less than 0.1 and they are categorised as the
weak stratification, in which turbulence is maintained in the
whole flow field.

Domain sizes and grid numbers. The domain size and
the grid number are the important parameters to study the
large-scales. Because we have adopted the periodic con-
ditions for both streamwise and spanwise directions, the
largest scales captured by LES are restricted to half of the
domain size, which should be ideally larger than the large-
scales appearing in the real wall-turbulence.

As regards the latter one, LES permits us to determine
the minimum scale of the directly resolved turbulence mo-
tion in our hands by considering the grid resolution, in
contrast to the DNS in which even the Kolmogorov scale
must be resolved as the smallest scales. This fact, in the
other way rounds, requires us to investigate in detail as to
whether the adopted numerical methods in LES properly
resolve the objective motion. In this context, in addition

to the open channel flow, the ordinary closed or confined
plane channel flow, in which reliable DNS at the moderate
Reynolds number has already been conducted, is also inves-
tigated intensively to determine the grid resolution required
for the reproduction of large-scales.

The domain sizes and grid numbers adopted in this study
are shown in Table 3. We can see that unexpectedly fine
grids of h} ~ 30 and kT ~ 20 are finally adopted in this
study. The determination of the grid resolution as well as
the region sizes for the large-scales will be mentioned in the
next section.

DEPENDENCE ON GRID RESOLUTIONS

Considering the fact that the spatial scales of the large-
scales in the outer layer is at least comparable to the bound-
ary layer thickness, it is expected that relatively coarse grids
are sufficient to reproduce the large scales. On the other
hand, if the large scale motion results from the small scales
in the vicinity of the wall such as proposed in the Townsend’s
attached eddy hypothesis, required grids for large-scales will
be unexpectedly fine to reproduce the near-wall turbulence.
Accordingly in this section, we will try to find the proper
grid resolution required for the large scale structures in LES
from the physical as well as the practical point of view.
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Figure 2: Turbulence statistics at Re, = 550 (DNS) and
590(LES): symbol, DNS; line, LES; (a),mean velocity; (b),
RMS of velocity fluctuation.

The moderate Reynolds number of 590 is adopted here
in which reliable DNS data has been provided by del Alamo
& Jiménez(2003). This DNS is known as the first simulation
using the domain size large enough to study the large scales.
It is acknowledged that the large-scales in the outer layer
are described as the large elongated anisotropic structures
with substantial energy only in the streamwise velocity com-
ponent. In this respect, reproduction of the pre-multiplied
one-dimensional power spectra of the streamwise velacity is
investigated at various grid resolutions. Special attention is
focused on the lower wavenumber region of the spectra in
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Table 3: Numerical conditions of the open channel for the scaling

Rer Ri, Domain size Grid number Grid spacing
Ly x Ly x Lz Ns X Ny xN, | ki r

395 1} 576 x 32 x 144 25.9 19.4
590 0 1276 x 6 x 2.257d 768 x 48 x 216
1180 | 0/0.45 1536 x 64 x 432

0.9 4wd X & X 278 512 x 64 x 384 29.0 19.3
1180 2.7 256 X § X wd 256 x 64 x 192

4.5 278 X &0 X wé 156 x 64 x 192

Table 4: Numerical conditions of the closed channel for the grid-resolution test

Cases Rer Domain size Grid number Grid spacing
= u,8/v Ly x L, Nz %X Ny x N, [y hy By
) 590 874 X 4né 192 x 65 x 192 77.2 1.6 ~ 44.9 38.6
an 590 8mwé X 4mwd 256 x 65 x 256 57.9 1.6 ~44.9 29.0
(111) 590 87d X 4% 384 x 65 x 384 38.6 1.6 ~ 44.9 19.3
(Iv) 590 878 x 4nd 512 x 65 x 512 29.0 1.6 ~ 44.9 14.5
V) 590 874 X 4w 512 x 65 x 384 29.0 1.6 ~ 44.9 19.3
DNS(Del Alamo) 550 87 X Amé 1536 x 257 x 1536 8.9 ~ 6.7 4.5
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Figure 3: 1-D pre-multiplied power spectra of the stream-
wise velocity component at yt ~ 15: (a), streamwise; (b),
spanwise.

the outer layer where large scales remarkably appear. The
grid resolutions tested here are indicated as (I} to (V) in
Table 4.

Figure 2 shows the GS turbulence statistics obtained by
LES and DNS. As regards the mean velocity profiles, ex-
cellent agreement with DNS can be achieved in LES even
in the case of the coarsest grid spacing. While rms of grid
scale (GS) velocity shows slight dependence on the grid reso-
lution especially in the near-wall region. The overestimation

kx® by / ui2

(®)

kz8 Guu/ ur?

L
k,0=2md/A;

Figure 4: 1-D pre-multiplied power spectra of the stream-
wise velocity component at y+ ~ 280:(a), streamwise; (b),
spanwise.

of the peak of the streamwise rms is worsen in the coarser
grids, which contradict the theoretical expectation. This
rather poor estimation of LES by using coarser grids has al-
ready been reported as one of the drawbacks of the dynamic
Smagorinsky model(e.g. Tsubokura, 2001ab), and even the
modified isotropic model adopted here cannot improve this
tendency in coarser grid spacing.

On the other hand, we can see less dependence of the
results on grid resolutions in the outer region (y* > 100)
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and goad correlation with DNS can be observed. But it does
not necessarily mean that large scales in the outer region are
well reproduced in all grid resolutions tested here.

The one dimensional pre-multiplied power spectra of the
streamwise velocity component are shown in Figs. 3 and 4.
We would like to note that the power spectrum multiplied
by the wave number in the logarithmic plot indicates that
the area under the profile is proportional to the power or
energy included in the corresponding wave-number range.

In the near-wall region (y* ~ 15) where the streamwise
rms shows maximum value, the pre-multiplied spectra ob-
tained by DNS peak at k.8 = 4.25 and k,6 = 27.5 (see Fig.
3). These values are equivalent to At ~ 810and AF ~ 130in
the inner-scaling, which represents the size of the small-scale
streaks (Kim et al., 1987). We can see that LES of coarser
grids such as (I) and (II) completely fails to reproduce the
spectral shape of DNS. It seems that the grid spacing of at
least AT ~ 30 and AT ~ 20 carresponding to (V) are re-
quired to properly simulate the characteristics of the small
scales near the wall.

In the middle of the outer layer (y/§ ~ 0.5), DNS peaks
at kx ~ 2.3 and k, ~ 3.5,4.5, which amount to \y ~ 2.88
and A, ~ 1.84,1.44 in the outer scaling (see Fig. 4). We
understand that these energetic modes at the lower wave
number represent the characteristic size of the large scales.
Contrary to the optimistic expectation that rather coarser
grids of such as (I) and (II),which fail to capture the small
scales near the wall, might be sufficient to reproduce the
large scales in this region, Fig. 4 indicates that wavenumber
of the spectral peak is larger estimated in (I) and (II). They
also fail to reproduce the steep peak of DNS in the spanwise
spectrum and only the moderate peak can be seen at the
higher wavenumber. Estimating the grid resolution in the
context of the reproduction of the peak of the spectra, we
should adopt at least the grid resolution corresponding to
(V) for the analysis of the large-scales.

SCALING

Neutral Cases
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Figure 5: Streamwise peak wavelength of the pre-multiplied
spectra at Rer = 395,590,1180 in the neutral state:(a),
inner-layer scaling; (b), outer-layer scaling.

The streamwise and spanwse wavelengths of the peak of
the pre-multiplied power spectra of the streamwise veloc-
ity fluctuation at various Reynolds numbers are shown in
Fig. 5 and 6 respectively. Data at three Reynolds numbers
collapse well near the wall (y+ < 100) in the inner-layer
scaling(see Fig. 5(a) and 6(a)) and decaying asymptotically
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Figure 6: Spanwise peak wavelength of the pre-multiplied
spectra at Re, = 395,590,1180 in the neutral state:(a),
inner-layer scaling; (b), outer-layer scaling.

to /\;" ~ 1000 and 100 for streamwise and spanwise direc-
tions respectively. While in the region away from the wall
(y/é > 0.25), the largest spanwise wavelength(see Fig. 6(b))
reaches approximately A, ~ 1.8 independent of the Re..
The streamwise peak(see Fig. 5(b)) also shows the similar
tendency and it reaches to A; ~ 36 independent of the Re..
But contrarily to the spanwise peak, relatively larger scale
of Az ~ 54 is going to appear at the higher Reynolds number
of 590 and 1180.

Stable Cases

The mean velocity profiles predicted by LES in the stable
state are shown in Fig. 7. The typical feature of deviating
from the logarithmic profile due to the stable stratification
can be observed. It should be noted here that in the case
at slightly larger than Ri, = 4.5(Ris ~ 8.4 x 10~2), flow
cannot maintain turbulence state and become laminar.

40

‘Rig~0 S

arsacl

110 ylmloo 1000

Figure 7: Mean velocity profiles at Rig(x1072) ~
0,1.4,2.6,6.0,8.4 and Re, = 1180,

The streamwise and spanwise wavelengths of the peak
of the pre-multiplied power spectra of the streamwise veloc-
ity fluctuation at various Richardson numbers are shown in
Fig. 8 and 9 respectively. We can see that the growth of the
large-scales at or above the logarithmic-layer are strongly
suppressed by the thermal stratification, and the stream-
wise and spanwise peak wavelengths of Ay ~ 38 and A\, ~ 26
above the logarithmic-layer in the neutral state are reduced
to about § and 0.58 in the most stable condition tested
here. It also should be noted that the height showing the
maximum wavelength is shifted away from the wall due to
the thermal stratification, say, from y* ~ 100(equivalent to
~ 0.15) in the neutral state to about y¥ ~ 500(~ 0.46) at
Ris = 8.4 x 10~? for the spanwise wavelength(see Fig. 9).
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In contrast to the large-scales, small structures near the wall
are not affected strongly by the stable stratification and both
the streamwise and spanwise peak wavelengths agree well at
yt < 50, independent on the Richardson numbers tested
here. Considering the fact that slightly stronger stratifica-
tion than Ris ~ 8.4 x 10° cannot maintain turbulence as
mentioned at the beginning of this subsection, small-scale
turbulence in the inner-layer is essential for turbulence pro-
duction while the large-scales in the outer-layer seems to
act on the production near the wall only secondarily even
though they holds substantial energy as seen in Fig. 4(b).
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Figure 8: Streamwise peak wavelength of the pre-multiplied
spectra at Ris(x10™2) ~ 0,1.4,2.6,6.0,8.4 and Re, =
1180:(a), inner-layer scaling; (b}, outer-layer scaling.
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Figure 9: Spanwise peak wavelength of the pre-multiplied
spectra at Ris(x1072) ~ 0,1.4,2.6,6.0,8.4 and Re, =
1180:(a), inner-layer scaling; (b), outer-layer scaling.

CONCLUDING REMARKS

The findings of the present study can be summarised as
follows:

1. Unexpectedly fine grid spacing of hf ~ 30 and A ~
20 for streamwise and spanwise directions is required
to properly capture the 1-D pre-multiplied power spec-
trum and its peak at the lower wavenumber in the
outer-layer where large-scales remarkably appear.

2. In the neutral state, the streamwise and spanwise peak
wavelength of the pre-multiplied spectra collapse very
well near the wall in the inner-scaling, while at or above
the logarithmic-layer, their peak wavelength reach the
maximum of Ay ~ 36 and A, ~ 2§ independent of the
Reynolds number tested here.

3. In the stable state, the thermal stratification sup-
presses the growth of the peak wavelength at or above
the logarithmic-layer for both streamwise and spanwise
directions, contrary to the near-wall small structures
being insensitive to the stable stratification tested here.

The first finding says that there seems to be a strong relation
between the near-wall small-scales and the large-scales in the
outer layer and may support the Townsend’s attached eddy
hypothesis and the subsequent physical models(e.g., Kim
and Adrian in 1999), in which wall-turbulence is described
as the evolutions of a hairpin structure attached on the wall
and their subsequent packets.
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