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ABSTRACT

The direct numerical simulations (DNSs) of the turbulent
Ekman layer over a smooth flat surface are performed. The
Reynolds numbers are set to be Rey = 400, 510 and 600
where Rey is defined by Rey = G/+/((vf) /2) with use of
the geostrophic wind velocity G, kinematic viscosity v and
Coriolis parameter f. The result with a higher Reynolds
number of 600 shows a logarithmic region. However the
slope is different from that of the turbulent Poiseuille flow
because of its three-dimensional nature. The characteristics
of the streak structure in the vicinity of the wall and large-
scale structure in far upper region are discussed based on
the obtained statistics such as pre-multiplied energy spectra.
The effect of Reynolds number onto the large-scale structure
is also discussed.

INTRODUCTION

The planetary boundary layer (PBL) is affected by the
system rotation. The boundary layer under the effect of the
rotation is called as the Ekman layer. The calculation of
the turbulent Ekman layer provides fundamental and im-
portant information about the three-dimensional turbulent
boundary layer and PBL.

It is well known that horizontal roll vortices are caused
by buoyancy or inflectional instability in the laminar Ekman
layer. Coleman et al.(1990) performed the direct numerical
simulation (DNS) of the turbulent Ekman layer with a low
Reynolds number, and found that no horizontal roll vortices
appeared under the neutral stratification.

Existence of large-scale structures in the wall turbulence
with a high Reynolds number is reported recently. Several
DNSs of turbulence with simple boundary condition such as
the turbulent channel flow are being made in order to obtain
detail information about the large-scale structures.

In the present work, the neutrally stratified turbulent Ek-
man layer with higher Reynolds numbers of Rey = 510 and
600 are computed through the DNS, where Rey is defined
by

G
Rej =~ (1)

(wf)/2

with use of the geostrophic wind velocity G, kinematic
viscosity v and Coriolis parameter f. The effects of the
Reynolds number upon the statistical quantities are ex-
amined based on the obtained DNS data. Moreover, the
characteristics of the turbulent structure appearing in the
vicinity of the wall and large-scale structure in the high-
upper region will be also discussed.

NUMERICAL PROCEDURES

Calculated flow field is the turbulent Fkman layer of an
incompressible viscous fluid over a smooth flat surface. The
system is rotating about a vertical axis with an angler ve-
locity € = {0, £,0).

The flow is driven by the combination of the horizontal
pressure gradient and the Coriolis force. The computational
configuration is given in figure 1. Periodic boundary condi-
tions are imposed in the z and z directions. The non-slip
and the Neumann conditions are adopted at the bottom and
top boundaries.

The governing equations are the continuity

V-u=0, (2)

and the Navier-Stokes equations

1
%—?+(u~V)u+2flxu:~—Vp+uV2u, (3)
p

where t, u, p and p are the time, the velocity vector, the
pressure and the density of fluid, respectively.

In the present computation, the fractional step method
is adopted for the coupling between the continuity and the
Navier-Stokes equations. The 2nd-order Crank-Nicolson and
the 2nd-order Adams-Bashforth methods are employed as
the time-advance algorithm; the former for the vertical vis-
cous term, the latter for the other viscous and the convection
terms. The Coriolis term is solved implicitly to avoid the
numerical instability. The finite difference method is used
for the spatial discretization. A 4th-order central differ-
ence scheme proposed by Morinishi (1995) is adopted in the
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Figure 1: Configuration.

—687—



Table 1: Computational conditions.

Coleman et al.(1990) present
Rey 400 400 510 600
Re - 8000 13000 18000
Ro - 10.0 10.0 10.0
Lo, Ly, L. 2.08,,00,2.06, 4.610.,1.540,,4.616, 6.526,,1.635,,6.520. 5.086,,1.694-,5.080-
IANANE 672, 00,672 1,560,521, 1,560 3,190,798, 3, 190 3,190, 1,060,3,190
Nz, Ny, N, 96,45, 96 256,96, 256 512,160,512 512,160,512
Azt, Azt 7.0,7.0 6.11,6.11 6.23,6.23 6.23,6.23
Ayt 0.2 — 0.148 — 14.5 0177 —12.5 0.150 — 18.5
25_ ) B e o e B LA S A8 1.5 T ——— s R
+®: —--— Poiseuille flow, Re, =640 ] [ Symbols : Experiments ] 1
s (Abe et al., 2001) ] ¥} (Caldwell et al., 1972) | >
20p 0000 b0 Re,=1264 _ , .
[ Symbols : Experiments 2o ] B & Re=1159 / / ]
15F (gald;’ 811?222" 1972) ] | Ekman layer (present) 7 ,’ 4
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Figure 2: Mean velocity profiles.

streamwise (z) and spanwise (z) directions, and the 2nd-
order central difference scheme is used in the wall-normal
(y) direction.

The non-dimensional parameters used in the present cal-
culation are the Reynolds Re and Rossby numbers Ro. They
are defined by

Gh G

Re = —/,Ro

» = 4)

where h is the height of the computational domain. The
computational conditions are summarized in table 1, where
L., Ly and L. are the lengths of computational domain
and Nz, Ny and N, are the number of grid points in z, y
and z directions, respectively. The lengths of computational
domain are described with use of the turbulent depth §, =
ur/f, where u. is the friction velocity. The superscript +
indicates that the variables are normalized by v and u-. The
discretizations in each direction are given by Azt, Ay* and
Azt. The height of computational domain is so set to be
enough large compared to the boundary layer thickness. The
much larger horizontal domain is adapted compared with
that of Coleman et al.(1990).

RESULTS AND DISCUSSION

Mean Velocity Profiles

The absolute values of mean velocity QF as a function
of height y* are given in figure 2 and compared with the
experiments of Caldwell et al.(1972). The Reynolds number
Rey is defined by Rey, = G/+/Qrv, where {1, is the angular
velocity of the plate rotation. The DNS of the turbulent
Ekman layer by Coleman et al.(1990) and the one of the
turbulent Poiseuille flow by Abe et al.(2001) are also shown
for comparison.

Figure 3: Near wall distributions of von Kdrman constants.

The profile for Rey = 400 shows good agreement with
that of Coleman et al.(1990). Both of these results indecate
that the logarithmic region is not obtained in the case of
Res = 400. On the other hands, in the case of the high-
est Reynolds number Rey = 600, the logarithmic region
is observed. Present result with Rey = 600 shows good
agreement with the experiments by Caldwell et al.(1972) in
the logarithmic region. The comparison with the turbulent
Poiseuille flow points out that the slope of logarithmic re-
gion in the turbulent Ekman layer is smaller than that of the
Poiseuille flow. The logarithmic region for the mean velocity
distribution is expressed as

1
Q+:;lny++B, (5)

where x and B are the von Kdrman and the additive con-
stants. Figure 3 shows the distributions of von Kdrman
constants. In the case of Rey = 600, x stays at a roughly
constant value of 0.45 — 0.5 in the region of y* = 50 — 100.
The values obtained in experiments by Caldwell et al.(1972)
agree well with the present result. This indicates that the
von Kdrman constants in the turbulent Ekman layer increase
if compared with the well-known k ~ 0.4 in the non-rotating
wall turbulence. In fact, figure 3 indicates that  in turbulent
Ekman layer is higher than that of the turbulent Poiseuille
flow calculated by Abe et al.(2001). This is due to the three-
dimensional nature of the turbulent Ekman layer. Moin &
Shih (1990) and Pierce & McAllister (1983) investigated the
three-dimensional turbulence through numerical and exper-
imental procedures, respectively. They also reported the
increase of k in the three-dimensional turbulence.

The hodographs of the mean velocities for Rey = 400,
510 and 600 are given in figure 4. The analytical solution in
the laminar Ekman layer is also shown. The spiral shrinks
as the increase of Reynolds number. This means that the
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Figure 5: Hodographs of projected Reynolds stress tensor
onto horizontal plane.

mean flow direction becomes closer to that of the geostrophic
wind. The angles ¢,¢ between the shear direction at wall
and the geostrophic wind direction are shown in table 2.
The analytical solution of the laminar Ekman layer gives 45
degrees. However, the angles ¢, in the turbulent Ekman
layer decrease to smaller values of 23 — 28 degrees. Caldwell
et al.(1972) also obtained smaller angles of ¢,0 = 19 — 28 in
his experiments. As for the Reynolds number dependence,
the angle ¢,0 decreases as the increase of Reynolds num-
ber. This is because the momentum transfer to the vertical
direction is enhanced in the case of higher Reynolds num-
ber. Therefore the momentum of geostrophic wind for the
higher Reynolds number penetrates more deeply into the
near wall region. Caldwell et al.(1972) did not found any
definite dependence of ¢,o upon Re, probably because of the
difficulty in the measurement. On the other hands, in the
stably stratified Ekman layer, Shingai & Kawamura (2002)
found the weakened momentum transfer caused the increase
of the angle ¢,¢.

Reynolds Shear Stress

In order to examine the three-dimensional characteristics
of Reynolds shear stress, the hodographs of the projected
Reynolds shear stress tensors onto the horizontal plane
(—u’v’,-W) are shown in figure 5. These hodographs
show an oval-shaped profile. They expand as the Reynolds

Table 2: Mean shear direction at the ground.

Laminar Turbulence
Rey - 400 510 600
b0 [Deg.] 45.0 28.3 254 23.3
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Figure 7: Instantaneous velocity field for Rey = 600. Gray
: high-speed region u'5+ > 2.8, dark gray : low-speed region
ust < —2.8, white : second invariant of velocity gradient
tensor I11 < —0.028.

number increases because the velocity fluctuations are en-
hanced. The expansion or the shrinkage of the hodographs
of the projected Reynolds shear stress tensors were also ob-
served in the stratified Ekman layer (Shingai & Kawamura,
2002). One may notice, however, a significant difference
in the way to expand or shrink of the hodograph of the
projected Reynolds shear stresses. That is, the hodograph
expands with its shape unchanged in the case of stratified
Ekman layer, while those obtained in the present calculation
extend especially into the fourth quadrant with the increases
of Reynolds number. This is because the components of
Reynolds shear stresses in the vicinity of the wall are very
sensitive to the variation of the Reynolds number. Figure 6
shows the profiles of the Reynolds stress components as the
functions of the height. The components —u/v’ and —v'w’
increase in the vicinity of the wall with the increase of the
Reynolds number, while they are almost constant in the re-

Table 3: Horizontal projected Reynolds stress direction near
the ground.

Re 400 510 600
¢r0 [Deg.] 473 7.75 8.86
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Figure 8: Contours of two dimensional two-point correlations of streamwise velocity fluctuations in horizontal planes for
Rey = 400. Solid lines, Ry, > 0 contour interval 0.125 ; dashed lines, Ry, < 0 contour interval 0.0625 ; dotted straight lines,

mean velocity directions.

gion of y/6- > 0.4. As the results, the part of the hodograph
described by the vectors in the vicinity of the wall expands
more significantly than the other parts.

The angles ¢,o between the vectors (—u/v’, —v/w’) in the
vicinity of the wall and the geostrophic wind vector G are
compared in the table 3. The angle ¢,¢ increases with the
increase of the Reynolds number. This is not in accordance
with the mean shear direction at the wall ¢,,0 shown in table
2. This is because the Reynolds shear stress components
increase with the growth of the Reynolds number especially
in the vicinity of the wall as described above. The peak
points of —u’v’ and —v'w’ move towards the wall and the
values approach to the total shear stress with the increase of
Reynolds number. Therefore, the both angles ¢, and ¢-¢
tend to converge.

Turbulent Structures in the Vicinity of the Wali

The instantaneous flow field for Rey = 600 are illustrated
in figure 7. The isosurfaces colored by gray and dark gray
show the high- and low-speed regions, respectively. Here,
the velocity fluctuation u/, means the fluctuation parallel to
the mean velocity direction at each height. The white one
shows the second invariant of the velocity gradient tensors
IIt < —0.028, corresponding to the central regions of the
vortices. The well-known streak structures are observed in
the vicinity of the wall.

In order to investigate the three-dimensional characteris-
tics of the turbulent structures, the two-point correlations of
streamwise velocity fluctuations on the horizontal plane at
each height are displayed in figure 8, where contour interval
is 0.125 and the dashed lines correspond the negative correla-
tions. The dotted straight lines show the mean flow direction
at each height. The high contour levels would be much more
elongated in the direction parallel to the structure. In the
near wall region (y+ < 52.8), many of the structures are
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Figure 9: Structure directions estimated by two-dimensional
two-point correlations Ry, and Ry in the vicinity of the
wall.
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Figure 10: Spanwise two-point correlation R;; for Rey = 600
at yt = 5.05.

elongated along the direction of the mean pressure gradient.
However, the mean directions of the structures are not par-
allel to the mean flow directions. The mean directions in
the vicinity of the wall are independent of the change of the
height and almost constant. On the other hands, those of
the upper region changes appreciably with the change of the
height. The mean directions of the structures are plotted
in figure 9 as the angle ¢; against the geostrophic wind di-
rection. The both angles ¢s of Ry, and Ryw are constant
in the region of y* < 20. However, in the upper region
of y* > 20, they decrease with the increase of the height.
Moreover, the angle of R, falls down to the opposite of the
pressure gradient direction in the region of y+ > 100.

The spacing of the streak structures are obtained from
the near-wall negative peak of the spanwise two-point corre-
lations Ry, and Ry.. The near-wall two-point correlations
for Rey = 600 are shown in figure 10. The negative peaks of
Ruw and Ry appear at 2+ = 56.1 and 68.5, respectively.
Since the streaks are not perpendicular to the z direction,
the real spacing between the streaks must be accomodated
with the use of the inclination angle ¢,. After the accomo-
dation, one obtains the spacing of the streak structures as
iF =111 - 132, which agrees well with lj ~ 100 known
for the non-rotating wall turbulence such as the turbulent
Poiseuille flow.

A close inspection of figure 7 indecates that many arch
or horseshoe shaped vortices exist in turbulent Ekman layer.

==

Poiseuille flow

" | 1 I 1
% 2000 2000 6000
yG/v, y(]inf/v
L 1 i 1 i 3 1 "
0 100 200 300 7

Figure 11: Vorticities distribution for Ekman layer (Res =
600), two-dimensional boundary layer (Spalart, 1986) and
Poiseuille flow (Abe et al., 2001). (Note that the origin is
shifted for each plot.)

Three components of the vorticities are shown in figure 11.
Those in the turbulent Poiseuille flow calculated by Abe et
al.(2001) and in the non-rotating turbulent boundary layer
by Spalart (1986) are also plotted for comparison. The pro-
files in the Poiseuille flow are shown as a function of y+ and
those in turbulent boundary layer as a function of yU;, ¢ /v,
where U;, s means the velocity in the far upper region.

Robinson (1991) proposed an idealized model for the tur-
bulent boundary layers based on the vortical structures. In
his model, arch or horseshoe shaped vortices dominate in the
wake region (y+ > 100). However, in the two-dimensional
wall turbulence, the spanwise component of the vorticity w,
stays at a lower value than the other components in the
region of y* > 100. On the other hands, in the turbulent
Ekman layer, w, becomes the highest component among the
three. This is an evidence of the complicated vortical struc-
tures with many arch or horseshoe shaped vortices in the
turbulent Ekman layer.

Large-Scale Structures

In order to examine the existence of the large-scale struc-
tures, the pre-multiplied energy spectra k, F,., of Re; = 600
is given in figure 12, referring to Jiménez (1998). Here, E.,.,
means the energy spectrum of the streamwise velocity and &,
is spanwise wave number. Since the pre-multiplied spectrum
is proportional to the power in a logarithmic band at k., its
peak indicates the wavelength of the energy-containing scale.
The wavelength A, containing the largest energy increases
with the increase of the height.

The spanwise wavelengths A, containing the largest en-
ergy at each height for Re; = 400, 510 and 600 are plotted
in figure 13. This figure shows the profiles the length-scale of
the most energetic structure as a function of the height. In
the wall vicinity, the wavelength stays at a constant value
of AT ~ 100. This corresponds to the streak structures.
In the middle region of y/6- < 0.4, the length-scales for
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Figure 12: Pre-multiplied power spectra k, Ey, for Rey =
600.

Rey = 510 and 600 increase linearly with the growth of the
height. In the non-rotating system, the similar linear in-
creasing region is obtained by Jiménez (1998) and by Abe
& Kawamura (2002). In the far upper region (y/é, > 0.4),
the wavelengths of the most energetic structures again keep
a constant value of A/d- ~ 1.0 — 1.3. This means the ex-
istence of the large-scale structures with the spanwise spac-
ing of 1.06, — 1.36-. In the case of low-Reynolds number
Re; = 400, the profiles of A, differ from those of the other
cases. This seems to be caused by the low-Reynolds number
effect and the narrow computational domain.

In the case of the turbulent Poiseuille flow, k. F,, in the
central region shows a sharp peak at its maximum point.
Moreover, k. FE,., in the near wall regions has secondary
maxima corresponding to the length-scale of the large-scale
structures (Abe & Kawamura, 2002). However, the profiles
of k;Ey. in the Ekman layer shows a dull rounded profiles
in the upper region and don’t have the secondary maxima
in the near wall region. This indicates that the turbulent
Ekman layer is less affected by the large-scale structures
than that of the Poiseuille flow. This is probably because
the three-dimensional nature of the turbulent Ekman layer
prevents the growth of the large structure.

CONCLUSIONS

The direct numerical simulations of turbulent Ekman
layer over a smooth flat surface performed. The Reynolds
number is set to be Rey = 400, 510 and 600, where the
Reynolds number Re; is based on the geostrophic wind G
and the Coriolis parameter f. The Reynolds number depen-
dences of the low order turbulent statistics are examined.
The characteristics of the turbulent structures are also dis-
cussed based on the obtained DNS data. The conclusions
are derived as follows;

e The logarithmic region is obtained in the higher-
Reynolds number case of Rey = 600. The slope of
the logarithmic region in the Ekman layer decreases
compared with the two-dimensional wall turbulence.

o Not only the size but also the shape of the hodograph
of the projected Reynolds stress tensor onto the hori-
zontal plane varies with the increase of the Reynolds
number.

e The well-known streak structures appear in the vicinity
of the wall. On the other hands, the complicated vortex
structures are obtained in the middle-height region.

600 2 T T T 1
- | WE=2.00:/8,)+0.18
400+ i ~T W=l
o p
1 ST TR TSR
200 AD a® o A y/s,:l,r)/
s} b
Oy g ac® O Re, =400
VO & Ree= 510
f ® Re; =600
O PR I P O 1 i 1 2 1 " 1
0 S0 y+ 100 0 02 04 06 0.8y/8, 1

Figure 13: Spanwise wavelength of the maxima of the pre-
ultiplied spectra for Rey = 400, 510 and 600.

e The investigation using the pre-multiplied power spec-
tra indicates that the large-scale structures with a
spanwise wavelength of 1.08, — 1.3d, exist in the far
upper region.

The present simulations were performed with the use of
VPP5000/3 of Tokyo University of Science and VPP5000/64
at the Computer Center of Nagoya University.
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