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ABSTRACT

In this paper transport equations are constructed for sub-
grid turbulent kinetic energy and subgrid mean dissipation
rate in Large-Eddy or Very-Large-Eddy Simulations by using
a Renormalization Group approach. The resulting equations
and effective viscosity are dependent on the (V)LES filter
width, the main dependence coming from the timescale in
the £ equation.

INTRODUCTION

In a good Large-Eddy Simulation, most of the turbulent
kinetic energy should be resolved, meaning that the filter
width should be comparable to inertial range lengthscales.
In complex geometries one is often not sure whether this
is reached, and generally many grid points are needed to
fulfill this requirement, especially near walls. Very-Large-
Eddy Simulations can be seen as a general class of models
which do not require the filter width to be in the inertial
range. Of course, this means that more complicated subgrid
models should be used as more of the large, anisotropic and
geometry-dependent structures have to be modelled. A class
of models that are able to model integral lengthscales are the
'RANS models, and therefore the usual approach to VLES
modelling has been to modify an existing RANS model by
somehow making it filter width-dependent. The comments
on these models are that they

e are mostly very ad hoc.

® contain empirically calibrated constants, coming from
comparing RANS simulations with experiments and Jor
DNS. These calibrations are generally no longer valid
in LES simulations.

¢ lack a physical basis.

This work is an attempt to construct a VLES model that
does not suffer from these shortcomings. To that end, trans-
port equations for subgrid quantities were constructed with
the Renormalization Group. The advantage of this approach
is that, within one framework, LES subgrid models as well
as RANS models can be constructed. The only difference
between the two is the lengthscale: in LES it is defined by
the filter width and in RANS by the integral lengthscale.

GENERAL CONSIDERATIONS FOR VLES MODELLING

It is clear that transport equations for mean turbulent
quantities will be necessary in a model that removes large,
anisotropic, integral range structures from the turbulent
field. Further it is well known that at least two of these

quantities are necessary to completely define the integral tur-
bulent length- and timescales required by the turbulent vis-
cosity. On the other hand, when the filter width gets smaller,
these subgrid quantities should change accordingly, as less is
being modelled. A general approach to VLES modelling has
been to start from a conventional RANS model by making
the lengthscale in these models filter width dependent (the
DES models belong to this class (Spalart e.a., 1997). For
the two-equation model, this results in an increase of the
dissipation term in the T{‘-equation. In another approach,
proposed by Speziale (Speziale,1998), the turbulent viscos-
ity, as calculated with a RANS model, is premultiplied by a
filter width dependent function. The comments from the in-
troduction apply for all these approaches, except maybe for
the model of Dejoan and Schiestel (2001) in which a two-
equation VLES model is constructed by means of a so called
split spectrum method. The result of their approach was a
filter width dependent factor in front of the destruction term
in the e equation. Their approach is most closely to the one
we propose, which also results in a filter width-dependent
€-equation. Some other models blend RANS-methods near
the wall with LES-methods at some fixed distance from the
wall. These are no genuine VLES models, and can rather be
seen as hybrid approaches or as LES with wall-modelling.

RENORMALIZATION GROUP AND VLES MODELLING

The Renormalization Group has had some successes in
turbulence theory and turbulence modelling. It’s main ac-
complishments in turbulence modelling have been the con-
firmation and extension of previous, empirically calibrated
models. The main advantage of RG for our purpose is that
with this method it is possible to construct LES and RANS
models within one framework. The connection between the
two classes of models is made when the filter width is re-
placed with the integral lengthscale.

Applications of RG to the turbulence problem have a
wide history. The first attempt to tackle turbulence with
RG techniques was by Yakhot and Orszag ( 1986), who ap-
plied the dynamical RG, mixed with EDQNM renormalized
perturbation theory, to calculate a variety of turbulence con-
stants and some standard type turbulence models (like a
Smagorinsky type subgrid model and KX — & type RANS
model). Many subsequent RG work in the turbulence lit-
erature consisted of remarks on, and improvements of, the
original work of Yakhot and Orszag. The work of Giles
(1994a,1994b) follows a different RG procedure, analogous
to the original RG method used in statistical mechanics.
This led to some different constants than the YO method,
and was less flawed by uncontrolled approximations. For
our purpose, Giles approach to the derivation of turbulence
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transport equations was more amenable for VLES, because
Yakhot and Smith had to rely on heuristic elements for
the construction of the production and destruction terms
in the -equation. When one wants to adapt the YO RANS
equation to their LES-form, extra terms arise with no clear
physical interpretation (De Langhe e.a., 2001).

THE RG METHOD

In this section a very short sketch of the statistical
mechanical RG as applied to turbulence will be given. Only
the general principle will be explained. In the statistical
mechanical RG approach to turbulence (Giles,1994a,1994b)
one starts with the NS equation, forced by a stochastic force
(with know probability distribution). The exact PDF of
the velocity field can then be constructed from that of the
force as P(u) = %’P(f) with %f]— the functional Jacobian
determinant of the transformation from the force field to
the velocity field (as given by the NS equation). One then
proceeds by defining an initial PDF Pp and initial value of
any functional of u, Ko(k,u), k = (k,w) by integrating out
all the wavenumbers larger than a UV cutoff Ap (e.g. the
Kolmogorov wavenumber):

Po = / PDu
k>Ag

Ko = / KDu
k>Ag

with the condition that the average of the functional remains

invariant:

/KoPoDuZ/KPDu
Starting from Po and Ko a sequence P1,P2,--- and
K1, K2, - are generated by successive integrating out

wavenumber-bands b=1Ag < k < Ap (b > 1) and rescal-
ing of var}ables such that the UV cutoff is kept fixed (i.e.
kni1 = bkp = (bkn,anwn) and Upt1 = Enun)t.

Prt1 = / Pr(un)Pun
b—1Ag<k<Ag

idem for K41 and with the condition that the average of
Kny1 over Pny1 is, to within a rescaling factor ¢n equal to
the average of Kn over Pn:

Un (bn)—E€ntn(kni1)

/ Kn(kn,un)PrDu, =
wn/Kn+1(f€n+1,un+1)73n+1'Dun+1~

This iteration proceeds until Pry1 = Pn = P* and Kn41 =
K, = K*, i.e. when a fixed point of the RG iteration is
reached; this fixed point denotes inertial range scaling be-
haviour.

When the rescaling is undone, the result of the RG proce-
dure is the inertial range form of K, which can be applied to

1This transformation generally results in the generation of
infinitely many new terms (that occur in a series expansion in
u,,), and one has to rely on perturbation theory to find recursion
relations between the series coefficients of Kny1 ad Kn. All
these and other technicalities can be found in the papers of Giles
(1994a,1994b) and the review of Barber (1977).

the terms occurring in the transport equations for LES sub-
grid quantities and the effective viscosity. When the cutoff
wavenumber occurring in these inertial range expression is
taken to be equal to the integral wavenumber, RANS trans-
port equations are obtained.

THE RG VLES MODEL

Model equations

The RG procedure leads to the following effective viscos-
ity #(A.) and transport equations for the subgrid turbulent
kinetic energy K and mean rate of dissipation &

1/3
0.1 - _
U(Ac) = <1+—1/_3_H (Ac4_A04)>
0
_ = P, -z - Ae)—
Dt k E+aawi(l’( C)am,—)
Dz 4 z
5‘5{ = SUAJAZP: - 2w(A)AZE
] Je
A
+a6xi (v( C)axi)

with vo the molecular kinematic viscosity, H(x) = maz(z,0)
and A, is the wavenumber corresponding to the filter width,
a = 1.39 and Py = —7%;u;Si; is the production of tur-
bulent kinetic energy. Ag is a wavenumber corresponding
to the viscous lengthscales where the RG iteration proce-
dure is started from. One notices that the timescale in
the F-equation is now dependent on the filter width. This
dependence results in a shorter timescale on finer grids, cor-
responding to a quicker response of € on changes in K.
This is physically consistent, as on a finer grid their are
less wavenumbers between the filter-wavenumber and the
dissipation wavenumber that have to be passed in order to
transmit information to the dissipation range.

Limiting behaviour
The DNS-limit follows if Ac > Ag, with Ap =

_\1/4

0.2 (%) the Kolmogorov dissipation wavenumber (in
Yo

that case the step function turns zero). The RANS limit

follows if Ac < Ae, where A is the wavenumber correspond-
ing to the peak of the energy spectrum, estimated in the
: 3/2 .
computation as Ae = (%CK) / I—(%‘/—; with Ck the Kol-
i
mogorov constant (calculated by RG to be equal to 1.44).
The ensemble-averaged values K and €; are the sum of their
resolved and modelled parts. Substitution of Ac with Ae
leads to the following RANS model (with the t-subscript
left out)

1/3

—2 N 3
CuK
v = 1prwl|ll+H ( i — > -C (1)
Vo€
DK a oK
DA p.—% 2
Dt K 6+61( V@xi) ()
DE g g2 98 3
= = Ca=Prp—-Ce2a=+ — 3
D le 174 eZK + oz, (a’/azi) {3)
with
Cy =01 a=1.39 Ce1 =133
Ce2 = 2.0 C = ©O(100). (4)
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Near-wall behaviour

The near-wall behaviour is regularized through the Heav-
iside function in the eddy-viscosity formulation: near the
wall the effective viscosity reduces to the molecular viscos-
ity. In LES-form this happens when A; > Ag = vy = 15 and
in RANS-mode when K /1of < 50. In order to get a cor-
rect logarithmic velocity profile in channel flow however, the
sharp jump in the Heaviside function had to be smoothened,
which can be done using the identity

H@) = lim %[1 + tanh(na)] 5)

where smaller n leads to a smoother Heaviside function.
The value of n can be obtained empirically, and the final,
low-Reynolds form of the eddy viscosity is (where we also
simplified the exponential form)

v=p+ f(0.1EAT /3 (6)

1+ tanh (n (W—C))} (7)
Vo

where n = 0.02 and C = 125, as determined by comparison
with DNS data. An additional production term in the &-
equation was also included. This term corresponds to a, due
to RG, neglected term in the high-Reynolds derivation of the
model. We did not calculate this term with RG, but instead
used the form as used in the Yang-Shih model (Yang and
Shih, 1993), i.e. we add the term

2
821),-
vov | ——— 8
0 <32j61'k> ( )
to the rhs of the g-equation. Finally, singularities in the z-

equation resulting from terms ~ /K = 1/7 are prevented
by adding the Kolmogorov timescale , /E% toT = K/E.

with

1
I=3

RESULTS

We show results of a simulation of turbulent flow over
a backward-facing step-at a Re = 5100, based on the step
height. When h denotes the step-height, an entry section
of length 10h was put before the step, and the section be-
hind the step measures 20h. The spanwise direction is 4h
wide. The dimensionless distance from the wall for the near-
est grid cell is approximately 1, based on the friction velocity
at the end of the region behind the step. The dimensionless
streamwise spacing ranges between 1 and 125. The uni-
form spanwise spacing (Az7) is around 20. The total mesh
consisted of approximately 480000 cells. To show the LES-
behaviour of the model, the coherent structures behind the
step are shown in Fig.5. More specifically, an isosurface of
a positive value of the second invariant of the rate of strain-
tensor, @ = 1/2(2;;Q4; — S;;S;5) is shown here, which is
known to depict well regions of low pressure. In the plot
we can see how the vortex rolls that are shed behind the
step are broken up by streamwise streaks, a typical feature
of this flow. In Fig.2 the skin-friction coefficient behind the
step is shown in comparison with the DNS results of Le et
al. (1997). One sees that the reattachment length is well
predicted. The obtained length of 6.4 is within 2% of the
DNS value. The Strouhal-frequency S = % of the vortex
shedding behind the step is approximately 0.073, which is
also well within the experimentaly obtained range (Eaton
and Johnston(1980)) found that the spectral peak occured

Co N o

Figure 1. Isosurfaces of @ = 11 show the coherent flow
structures behind the step. The flow comes from the left
and is shed at £ = 0.
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Figure 2: Skin-friction coefficient behind the backward fac-
ing step (Re=5100 based on the step height). Line: VLES
computation, symbols: DNS.

in the Strouhal number range 0.066 < S < 0.08). The ampli-
tudes of the skin-friction coefficient behind the recirculation
zone is not completely satisfying, and this problem is stiil
under investigation.

Also shown are the results for turbulent flow over a peri-
odic hill. Shown in Fig.5 are the stream streaks for the mean
velocity of turbulent flow at a Reynolds number of 10595
(based on the hill height A and the bulk velocity above the
top of the hill). The recirculation length is slightly larger,
but still in good agreement with the results obtained from
highly resolved LES, in which about 20 times more grid-
points were used (Temmerman and Leschziner,2001). Also
shown are streamwise velocity profiles, uv-stresses and tur-
bulent kinetic energy profiles at the locations z/h = 2 and
z/h = 6. The total turbulent kinetic energy depicted in
these figures is the sum of the resolved and modelled parts.
From the modelled part of the turbulent kinetic energy we
see that against the wall, a large part of the kinetic energy is
modelled, while in the center of the flow, most of the kinetic
energy is resolved.
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Figure 3: Stream streaks for turbulent flow over a periodic
hill at Re=10595.
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Figure 4: Mean streamwise velocity profiles, uv-stresses
and turbulent kinetic energy profiles at z/h = 2. Lines:
benchmark LES, X: our computation, +: modelled part of
turbulent kinetic energy.
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Figure 5: Mean streamwise velocity profiles, uv-stresses
and turbulent kinetic energy profiles at z/h = 6. Lines:
benchmark LES, x: our computation, +: modelled part of
turbulent kinetic energy.

CONCLUSION

A RG K - £ model was made dependent of a cut-off
wavelength A.. This form makes the model appropriate for
Very Large Eddy Simulations, in which a turbulence model
is desired that can go continuously from a LES-regime to
a RANS-regime. This adaptive behaviour occurs naturally
in the present approach, without having to rely on ad-hoc
assumptions.
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