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ABSTRACT

In order to develop a universal subgrid scale model for
large-eddy simulation (LES), we take note of one-equation
model for subgrid scale (SGS) kinetic energy, Kscg. A
dynamic procedure is used to the production term in the
transport equation of SGS kinetic energy, while the eddy
viscosity in the filtered equation of motion is determined
indirectly through Ksgg. The statistically derived model
for K5 g equation is adopted for the basis of our improve-
ment. First, our model was applied to a fully developed
turbulent flow in a plane channel and agreement with DNS
database was satisfactory. In addition, the influence of solid
body rotation on a channel flow was compared. Our model,
resolving a defect of conventional eddy viscosity models,
reasonably reproduced the decay of SGS turbulence in the
vicinity of the suction side.

INTRODUCTION

Smagorinsky model (1963) is still most popular SGS
model in LES and has been used for wide variety of tur-
bulent flows. It needs modifications in the non-turbulent
region and in the vicinity of solid wall. This makes a bar-
rier to universal utility. The dynamic Smagorinsky model
proposed by Germano, et al. (1991) and modified by Lilly
(1992), may overcome this problem by automatically adjust-
ing the model parameter with the aid of resolved turbulence.
The negative value of SGS eddy viscosity sometimes appears
in the dynamic Smagorinsky model and it could be related to
the energy backscatter from SGS to GS portion. It however
should be removed in some way since it causes numerical
instability. As a result, the aspect of the dynamic model is
diminished in an actual application.

The authors proposed the utilization of the dynamic
procedure in one-equation model of SGS kinetic energy (Ka-
Jishima and Nomachi, 2003). It is motivated through the
reconsideration about what can be evaluated dynamically.
In our method, the production of Kg¢g, corresponding to
the energy transfer from GS to SGS portion of turbulence
kinetic energy, is determined through dynamic procedure.
On the other hand, SGS stress in the filtered equation of
motion is approximated by the eddy viscosity model and
it is given indirectly by Ksgg. We used the theoretically
derived one-equation SGS model by Yoshizawa and Horiuti
(1985), Horiuti (1985) and then improved by Okamoto and
Shima (1999) as a basis. Thus any ad hoc modification for
the length scales is excluded.

Generally, the one-equation model has many notable
merits. Thus it has been attracted attention (Ghosal, et
al., 1995; Davidson, 1997; Sohankar, 2000). The SGS eddy-
viscosity, being proportional to vKsggA, does not become

negative anywhere. Kgag disappears automatically in non-
turbulent region and it becomes zero on the solid wall due to
the boundary condition. Moreover, wide variety of factors,
such as non-equilibrium properties and additional energy
sources or sinks such as particles or bubbles can be included.

First in the present paper, we apply our one-equation
SGS model to a fully developed flow in a plane channel as
a standard example. Results by our model and the exist-
ing model are compared with DNS database (Moser, et al.,
1999). Second, the realizability of effect of Coriolis force in
the rotating channel is examined. Especially in the suction
side of rotating channel, Smagorinsky model gives SGS tur-
bulence due to the mean velocity gradient even if GS flow
is almost re-laminarized. We will demonstrate this issue is
solved by our method.

BASIC EQUATIONS

Basic Equations for LES and Dynamic Smagorinsky Model
The density and viscosity of flow are assumed to be con-
stant. The filtering operation is represented as
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where G is the ‘grid filter’ function having the represen-
tative length corresponding to the width of computational
grid. Basic equations for LES is the filtered Navier-Stokes
equation of motion
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and the filtered continuity equation
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where @ denotes the GS component of velocity, p (in P =
P/p) the GS component of pressure, p the fluid density, v
the kinematic viscosity of fluid.
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represents the deformation rate tensor of GS flow field and
Tij = U — U;4; is the SGS stress.
The ‘test filter’
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which has wider length scale than that of grid filter is in-
troduced in the dynamic model. Applying the test filter to
Egs.(2) and (3) results in
of; . o8 _ oP @ -
+ =~ +—(=Tij +2vS45),
ot 7 ox; ox; + Bzz:j( i+ 255) ©)

on;
dz;
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where Ti; = W; — fii; is the sub-test scale stress. The
dybamic Smagorinsky applies the same eddy-viscosity as-
sumption for 7;; and T; as follows (Gernamo, et al., 1991):
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where the superscript ¢ denotes an anisotropic part of the
tensor, |5|(= \/25nm Snm ) the strength of the tensor S;;. A
is the characteristic length of the grid filter G and A is that
of the test filter G. The ratio a = (A/A) is a parameter in
the dynamic Smagorinsky model. Cg is usually determined
according to the least square method (Lilly, 1992)
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to minimize the error for Germano identity L;;(= Ti; —
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One-Equation Dynamic Model
Applying the eddy viscosity assumption to the filtered
equation of motion (2) results in
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The SGS eddy viscosity vs can be given as

vs = CuAuvy/Ksgs (12)

by the dimensional analysis, where Ksgs(= 7:j/2) is the
SGS kinetic energy. Since C, (> 0) is constant, vg cannot
have negative value. Thus the computation of Eq.(11) is
expected to be numerically stable. Kggs is obtained by
solving the transport equation
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which has been theoretically derived (Yoshizawa and Ho-
riuti, 1985; Horiuti, 1985; Okamoto and Shima, 1999).

We propose a one-equation dynamic model in which the
dynamic procedure, Egs.(8)-(10), is applied to 7% in the en-
ergy production term, the first term in RHS of Eq.(13). This
realizes the concept that the dynamic procedure is suitable
for the energy transfer between GS and SGS component.
On the other hand, the eddy viscosity vg in the equation of
motion (11) is given by Eq.(12). Thus vg is indirectly influ-
enced by the interaction between GS and SGS component
of turbulence.

The SGS eddy viscosity vg becomes automatically zero
on the solid wall in accordance with the boundary condition
Ksas = 0 at the wall. However, additional modification
is necessary to meet the correct asymptotic behavior to the
wall. The proposal by Okamoto and Shima (1999) is adopted
here. The characteristic length A, in Eq.(12) is given by

A
T 1+ CLA252/Ksgs

A, (14)
This is considered to be a Pade approximation, to avoid the
negative value, of the 3rd-order anisotropic representation
(Horiuti, 1990; Horiuti, 1993). As for the dissipation term,
the length scale is not modified but the additional term

_ . 0vVKsgs 0vKsags
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is used. This has the same formulation used in the low
Reynolds number version of k—e model (Jones and Launder,
1972).

Any smoothing or averaging is not applied for Cg in
our method. Even if Cs became negative, the stability of
computation was maintained in our experience. The ar-
tificial handling was only the clipping of negative Ksgs
(max[0, Ksgs] — Ksgs). This manipulation was unlikely
to affect the numerical result because the rate of appear-
ance was less than a few percent in the vicinity of wall and
absolute values of negative Kggg were very small.

The width of the grid filter A; is assumed to be same
as that of the computational grid A;. The width of the
test filter A; is twice of A;. Non-dimensional constants are
as follows; C, = 0.05, C- = 0.835, C4 = 0.10 and C; =
0.08. C,, C: and Cy are same as recommended values for
channel flow (Okamoto and Shima, 1999). C}, is close to the
theoretically derived value (0.0784).

As shown above, our model does not use any parameters
that is difficult to be specified for the complicated geome-
tries, such as friction velocity on the wall or distance from
the wall. Considering the numerical stability and universal-
ity in model, we believe this dynamic procedure is applicable
for wide variety of turbulence flow field.

LES OF FLOW IN PLANE CHANNEL

A fully developed flow in a plane channel, maintained by
the constant pressure gradient, is considered in this section.

Outline of computation

The z, ¥y and z represent streamwise, wall-normal and
spanwise directions, respectively. The computational do-
main is L, = 648, Ly = 26 and L. = 3.26 in each
direction where § is the channel half width. The peri-
odic boundary condition is assumed in the homogeneous
(z and z) directions. The non-slip boundary condition is

Table 1: Number of grid points and resolution

Re, - N, X N, X N, Azt Azt Ayl
Casel 32 X 65 X 32 79.0 39.5 238
395 Case2 48 X 65 X 48 527 26.3 23.8
Case3 64 X 65X 64 395 19.8 238
Cased 48 X 65 X 48  78.7 393 355
590 Case5 64 X 65X 64 59.0 29.5 355
Caseb 96 X 97 X 96 39.2 19.7 23.7
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applied at the solid wall. We use the staggered arrange-
ment of variables, being suitable for the incompressible fluid
flow. The spatial derivative is approximated by the central
finite-difference method of the 4th order accuracy. The time-
marching method is SMAC scheme, using the 2nd-order
Adams-Bashforth method for the prediction step. To solve
the Poisson equation of pressure, the FFT method is ap-
plied into the periodic directions and the LU decomposition
method in the wall-normal direction.

The Reynolds numbers based on § and the mean friction
velocity at the wall u, are Re.(= du,/v) =395 and 590,
which is corresponding to the DNS database (Moser, et al.
1999). To observe the influence of grid resolution, mainly 3
steps of computational size as shown in Table 1 are tested
for both Reynolds numbers. In the table, N; is the number
of grid points in each direction and A;F is the grid width
in the wall unit. Because of the non-uniform distribution in
y direction, the grid width at the channel center, ij , is
shown in Table 1.

The test filtering on the GS flow field is required in the
dynamic procedure. Usually in the finite-difference method,
the convolution integral of Eq.(5) is simplified for the com-
putational convenience. Using the Taylor expansion for the
Gaussian filter, G(r; A) = 1/6/7A2 exp(—6r2/A2), the ap-
proximation

}_ [’:f+%/‘ r2G(r;A)dr] ~ f+ 2—A4-f_", (16)

oo

is derived (Leonard, 1974). The last term is obtained by the
finite-difference method. In case of flow in a plane channel,
the test filter is applied in the homogeneous (z and z) direc-
tions and not in the wall-normal direction because Ay is not
uniform. Assuming the test-filter width in the homogeneous
directions to be twice of the grid spacing, the ratio becomes
af= (AmAyAz)l/?’/(Aw[lyAz)lﬁ] =41/3,

Hereafter, ’OD model’ denotes the one-equation dynamic
model proposed in this study, ’S model’ is the standard
Smagorinsky model (1963) using Cg = 0.1 with van Dri-
est damping near the wall, O model’ is the one-equation
model (Okamoto and Shima, 1999). The common numerical
method is used for LES with these models.

Results and Discussion
Figure 1 shows the relationship between the grid resolu-
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Figure 1: Influence of grid resolution: relationship between
bulk velocity and grid resolution in spanwise directon
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Figure 2: Mean streamwise velocity
tion, AY, and the bulk velocity
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Figure 1 includes the results of higher and lower resolution
cases than Cases 1~3 for Re; = 395 and Cases 4~6 for
Rer = 590. As expected, results of all models converge on
the DNS result by improving the grid resolution. In case of
poor resolution, our OD model overestimates the flow rate.
This is thought to be common feature of dynamic procedure
implemented by the finite-difference method (Morinishi and
Vasilyev, 2001). In case of finer grid, on the other hand,
OD model shows best convergence to the DNS data. This
tendency is evident especially for Azt < 30.

Figure 2 compares mean velocity profiles. The result of
our OD model shows closest agreement with DNS database,
except for Cases 1 and 4. Figure 3 shows intensity of veloc-
ity fluctuation. In Fig. 3(a), results of vrms by S and OD
models are almost same. The streamwise intensity, u,ms, is
overestimated, while other components, vyms and wyms, are
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Figure 3: Intensity of velocity fluctuations at Re, = 590

underestimated in case of poor resolution. This is a common
feature in LES and DNS and is due to the lack of resolution
for vortex structure in near-wall region. Results by finer grid
are improved as shown in Fig. 3(b).

The asymptotical behavior of GS and SGS components
of turbulence kinetic energy, Kgs and Kgggs, are shown in
Fig. 4. Kgs should be proportional to (ny)2 in the vicinity
of the plane wall. On the other hand, there is not such
an requirement for Ksgs because it depend on the filter
width A that is commonly a function of distance from the
wall. In any case, however, it is desirable Kggs behaves in
accordance with Kgg. For such a sense, the result shown in
Fig. 4 seems reasonable.

Figure 5 shows the budget of SGS kinetic energy, namely
average of each term in the transport equation of Kggs. For
the most part, the production is balanced with the dissipa-
tion. So the local equilibrium is satisfied for the ensemble
average. In the vicinity of the wall, the production is re-
placed by the viscous diffusion. In our case, the addition
of Eq. (15) played an important role to realize a reasonable
profile of Ksgs and its budget in the near-wall region.

Finally we would like to mention about the increase in
CPU time by introducing the dynamic procedure into a one-
equation SGS model. But, please note that the additional
part has not yet optimized for vector processors (NEC SX-4
and SX-5). About 70% was increased for simultaneous calcu-
lation for the transport equation of Ksgg (without dynamic
procedure) and additional 70% was needed for the dynamic
procedure of the energy production in Ksgs. The OD
model therefore required CPU time about 2.5 times larger
than that for the S model.

LES OF FLOW IN A ROTATING CHANNEL

A fully developed flow in a plane channel with constant

Figure 4: Near-wall behavior of GS and SGS turbulent ki-
netic energy at Rer = 590
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Figure 5: Budget of SGS kinetic energy at Re, = 590 in
Case 6

spanwise rotation, as shown in Fig. 6, has been extensively
studied by LES (Miyake and Kajishima, 1986a and 1986b)
and DNS (Kristoffersen and Andersson, 1993) because of
the numerical convenience. Modulations in shear stress and
turbulence intensity are caused by the Coriolis force. Fur-
thermore, the secondary flow of the roll-cell type is observed
in the mainstream. This is a typical example of turbulence
phenomena affected by the body force, including an impor-
tant feature of the flow in turbomachineries.

In the rotating channel, turbulence is enhanced in the
pressure wall side and attenuated in the suction side. This
is due to the shift of Reynolds stress profile caused by the
Coriolis force. The result of LES using the Smagorinsky

y
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e
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Figure 6: Rotating channel flow
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Figure 7: Mean streamwise velocity in the rotating channel
by OD model
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Figure 8: SGS turbulent energy in the rotating channel by
OD model

model successfully reproduced this tendency (Miyake and
Kajishima, 1986a and 1986b). At the same time, a defect
of Smagorinsky model was exposed concerning to the re-
laminarization in the suction side. In this side, turbulence
disappears when the rotation is larger a certain rate. But
the SGS eddy viscosity is given by the Smagorinsky model,
vs = CsA|5;;], because of the mean velocity gradient. The
conventional one-equation model may not solve this because
the mean velocity gradient gives SGS energy production.
Thus some empirical modification is required for the primi-
tive model.

The one-equation dynamic model proposed in our study
is expected to remove this sort of inconsistency between the
GS and SGS portions of turbulence energy. The main reason
is that the production of SGS energy disappears automati-
cally in the situation of re-laminarization of GS turbulence.

Outline of Computation

The filtered Navier-Stokes equation on a frame rotating
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Figure 9: Reynolds shear stress profiles in the rotating chan-
nel (dashed lines represent the non-rotating cases)

at the constant angular velocity 2 is as follows,

da; oa; 8 ,. ri?
L iy — = 261Gy — Sioliy) — P
ot U Ox; (di122 2%1) am,-( 2 )
o _
+£;(—Tij +2vS;;), (18)

where § is the Kronecker delta. The first term in the right
hand side represents Coriolis force while the potential of cen-
trifugal force is included in the pressure term.
The angular velocity €2 can be non-dimensionalized by
the channel width 24 and the wall friction velocity averaged
1

on both sides, u2 = (u,z.s + uﬁp) , as follows,

Ro, = 206 /u, (19)

where u-s and urp are wall friction velocities on the suction
and pressure sides. The intensity of rotation is also repre-
sented by bulk velocity U,

Ro = 2|/6/Uy = |Ror|ur /U . (20)

Our calculation was conducted for Ro, = 0 ~ 10 at Re, =
150. The computational domain is L, = 12.84, L, = 24,
L, = 6.44 and the number of computational grid is N, = 48,
Ny = 65 and N, = 48. The numerical method is same as
that for non-rotating case.

Results and Discussion

Figure 7 shows the change of mean velocity profiles due
to the rotation. When system rotation is imposed, the
profile becomes asymmetric. Namely, the velocity gradient
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decreases in the suction side (z = 0) and vice versa in the
pressure side (z = 2). In the mainstream region, the neu-
tral situation S = —2Q/(dU1/dy) = —1 is observed which
is corresponding to the former DNS (Kristoffersen and An-
dersson, 1993). The above relation derives U1+ =2Qy+C.
There seems the region of constant velocity gradient 22 and
it becomes wider in accordance with the increase in Ro;.
As shown in Fig. 7, the realization of this tendency is quite
reasonable.

Figure 8 shows an influence of rotation on the SGS ki-
netic energy Kggs obtained by our OD model. It increases
in the pressure side and decreases in the suction side. As ex-
pected, Kgggs reaches zero in the suction side representing
the re-laminarization tendency.

Figure 9 shows Reynolds shear stress (total of GS and
SGS portion). The Reynolds stress reaches to zero in the
suction side. In the result by S model, there remains
Reynolds stress even for high rotation rate. As clearly
shown, our OD model represents the SGS shear stress in
the near-wall region of the rotating channel more correctly
than S model.

CONCLUSIONS

The dynamic procedure is suitable for the determination
of energy transfer between GS and SGS component. On the
other hand, the SGS eddy-viscosity should depend on the
subgrid scale kinetic energy. In this study, these matters
have been incorporated by applying the dynamic procedure
for the production term in the equation of SGS kinetic en-
ergy. Namely, the one-equation dynamic model is proposed.
Furthermore, any empirical modification for SGS model was
not required in our method. Especially, parameters such as
the distance from the wall or wall friction velocity, which are
hardly specified for complicated geometry, were not used.

The test by a fully developed flow in a plane channel
proved the agreement between our model and established
DNS database. When the grid spacing in the spanwise di-
rection is less than 30 in wall unit, our OD model showed
advantage over previous models. The OD model also showed
the availability for the flow in a rotating channel.

The dynamic procedure sometimes gives negative pro-
duction rate of SGS kinetic energy. It decrease Kgqgs for
some extent and indirectly affect the GS portion through
the SGS eddy viscosity evaluated by Ksgs. In this process,
any numerical instability was not caused. In our case, only
the clipping for negative Ksgs was needed. But the frac-
tion of clipped area was negligible and this treatment was
unlikely to affect the numerical result. Although adopting
the one-equation dynamic model increases the CPU time, it
has a number of notable merits being in accordance with the
scope of dynamic procedure.

REFERENCES

Davidson, L., 1997, “Large eddy simulation: A dynamic
one-equation subgrid model for three-dimensional recirculat-
ing flow”, 11th Int. Symp. on Turbulent Shear Flow, Vol.
3, pp. 26.1-26.6.

Germano, M., Piomelli, U., Moin, P., and Cabot, W.
H., 1991, “A dynamic subgrid-scale eddy viscosity model”,
Phys. Fluids, Vol. A3, No. 7, pp- 1760-64.

Ghosal, 8., Lund, T. S., Moin, P. and Akselvoll, K., 1995,
“A dynamic localization model for large-eddy simulation of
turbulent flows”, J. Fluid Mech., Vol. 286, pp. 229-255.

Horiuti, K., 1985, “Large eddy simulation of turbulent
channel flow by one-equation modeling”, J. Phys. Soc. Jpn.
Vol. 54, No. 8, pp. 2855-2866.

Horiuti, K., 1990, “Higher-order terms in the anisotropic
representation of Reynolds stresses”, Phys. Fluids, Vol. A2,
No. 10, pp. 1708-1710.

Horiuti, K., 1993, “A proper velocity scale for model-
ing subgrid-scale eddy viscosities in large eddy simulation”,
Phys. Fluids, Vol. A5, No. 1, pp. 146-157.

Jones, W. P. and Launder, B. E., 1972, “The prediction
of laminarization with a two-equation model of turbulence”,
Int. J. Heat and Mass Transfer, Vol. 15, pp. 301-314.

Kajishima, T. and Nomachi, T., 2003, “One-equation
subgrid scale model using dynamic procedure for the en-
ergy production”, to appear in 4th ASME-JSME Joint
Fluids Engineering Conference, Honolulu, (also submitted
to Trans. JSME, Ser. B, in Japanese).

Kristoffersen, R. and Andersson, H., 1993, “Direct simu-
lations of low-Reynolds-number turbulent flow in a rotationg
channel”, J. Fluid Mech., Vol. 256, pp. 163-197

Leonard, A., 1974, “On the energy cascade in large-eddy
simulation of turbulrnt fluid flows”, Adv. in Geophys., Vol.
18A, pp. 237-248.

Lilly, D. K., 1992, “A proposed modification of the Ger-
mano subgrid scale closure method”, Phys. Fluids, Vol. A4,
No. 3, pp. 633-635.

Miyake, Y. and Kajishima, T., 1986a, “Numerical Sim-
ulation of the Effects of Coriolis Force on the Structure of
Turbulence: 1st Report, Global Effects”, Bull. JSME, Vol.
29, No. 256, pp.3341-3346.

Miyake, Y. and Kajishima, T., 1986b, “Numerical Sim-
ulation of the Effects of Coriolis Force on the Structure of
Turbulence: 2nd Report, Structure of Turbulence”, Bull.
JSME, Vol. 29, No. 256, pp.3347-3351.

Morinishi, Y. and Vasilyev, O. V., 2001, “A recom-
mended modification to the dynamic two-parameter mixed
subgrid scale model for large eddy simulation of wall
bounded turbulent flow”, Phys. Fluids, Vol. Al3, No. 11,
pp- 3400-3411.

Moser, R. D., Kim, J. and Mansour, N. N., 1999, “Di-
rect numerical simulation of turbulent channel flow up to
Rer=590", Phys. Fluids, Vol. All, No. 4, pp. 943-945.

Okamoto, M. and Shima, N., 1999, “Investigation for the
one-equation-type subgrid model with eddy-viscosity expres-
sion including the shear-dumping effect”, JSME Int. J., Vol.
42, No. 2, Ser.B, pp. 154-161.

Smagorinsky, J., 1963, “General circulation experiments
with the primitive equations”, Mon. Weather Rev., Vol. 91,
pp. 99-164.

Sohankar, A., Davidson, L. and Norberg, C., 2000,
“Large eddy simulation of flow past a square cylinder: Com-
parison of different subgrid scale models”, Trans. ASME,
J.Fluids Eng., Vol. 122, pp. 39-47.

Yoshizawa, A. and Horiuti, K., 1985, “A statistically-
derived subgrid-scale kinetic energy model for the large-
Eddy simulation of turbulent flows”, J. Phys. Soc. Jpn,
Vol. 54, No. 8, pp. 2834-2839.

—656—





