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ABSTRACT

Direct Numerical Simulations (DNS) of turbulent two-
phase flows have been carried out to study the polydispersion
of a vaporizing spray in a statistically stationary grid tur-
bulence. The evolution of various droplet size classes has
been studied. It exhibits different dynamical behaviors for
droplets of different sizes. The results have been used to
evaluate successfully a new Eulerian model which proves its
capability to capture the polydisperse spray dynamics and
vaporization.

INTRODUCTION

In industrial combustion configurations, the fuel is most
of the time injected as a dispersed phase of liquid droplets.
In gas turbines, diesel engines, industrial furnaces and com-
bustion chambers, the behavior of the gaseous fuel mixture
fraction plays a crucial role in determining the combustion
characteristics and efficiency of the process. Consequently,
the description of the motion of the spray, its vaporization
and its coupling with the gaseous turbulent flow field are
important for the prediction of two-phase turbulent com-
bustion. Even if the process has to be understood as a
whole from injection up to combustion, one of the key is-
sues will be the turbulent mixing and vaporization of the
cloud of fuel droplets, a phenomenon strongly influenced by
the polydisperse character of the spray. In this paper, we
therefore focus our attention on the turbulent dispersion of
a vaporizing liquid spray and on its polydispersion.

The purpose of the present study is two-fold : first, we
investigate the physics of this phenomenon using a DNS Eu-
ler/Lagrange approach in the configuration of a statistically
stationary spatially decaying turbulence, with a monodis-
perse injection. We analyze the DNS results for the dis-
persed phase with a Eulerian point of view and demonstrate
the strong coupling of the dynamics and vaporization which
generates droplets of various sizes. Second, we provide a Eu-
lerian model and description of this phenomenon extending
the recently introduced Eulerian multi-fluid models which
are well suited to the presence of a polydisperse spray. Both
approaches will then be compared, thus proving the abil-
ity of the Eulerian model to capture the physics and the
complementarity of Lagrangian and Eulerian tools for the
description of two-phase flows.
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Figure 1: Sketch of the coupling between the four solvers

Two types of models may be actually considered for the
description of the polydisperse liquid phase. The first one is
of Lagrangian and particular type as it is described originally
by Dukowicz (1980). The distribution of droplets is approx-
imated using a finite number of computational parcels; each
parcel represent a number of droplets of identical size, veloc-
ity and temperature. This kind of method is currently used
in many codes and especially suited for DNS calculations
since it does not introduce any numerical diffusion, the par-
ticle trajectories in the phase space being exactly resolved.
It is then particularly accurate as long as the sampling of
the phase space is high enough, a constraint that becomes
expensive for instationary configurations.

In the context of RANS and LES numerical simulations,
where some scales are not resolved but modeled, the perspec-
tive of an Fulerian model for polydisperse sprays becomes
very attractive. Indeed, it is interesting to study the Eule-
rian form of the spray equations and to deduce the structure
of physical phenomena such as waves, diffusion, etc. On the
other hand, modeling of coalescence and break-up phenom-
ena as well as the coupling with the combustion process are
more straightforward by using an Eulerian formulation. Be-
sides, a coherent way of treating the two phases yields a
better ability for parallel computations and optimization.

However, actual Eulerian models present two major
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Table 1: Data concerning the injected droplets. x=0 in-
dicates solid particles (s = cste), whereas x=1 represents
vaporizing droplets s/so =1 — t/7y

Name 7p/7w Tp/Tt
TOVx 195 0.06
T2Vx 3.5 3.3

drawbacks : the inability to capture the polydispersion in
size of the spray (only through a couple of moments such as
in Vallet et al. (2001)) and the lack of direct link with the
kinetic level of description for sprays. Thus, in the context of
laminar flows, Laurent and Massot (2001) have introduced
a multi-fluid approach, rigorously derived from the kinetic
level of description, which has the capability to include co-
alescence and break-up as shown in Laurent et al. (2001)
and to describe the vaporization, dynamics and heating of
droplets of various sizes as studied in Laurent et al. (2002).

The paper is organized as follows : in a second section,
the physical configuration and numerical methods are pre-
sented. We then focus on the analysis of the DNS results
where we emphasize a surface conditioned Eulerian analy-
sis of the polydisperse spray. We then conduct, in a fourth
section, the derivation of the Eulerian model and present
the numerical method used in the particular configuration
under consideration. The DNS results and the simulations
obtained from the Eulerian solver are then compared in the
last section.

GEOMETRY AND NUMERICAL CONSIDERATIONS

In this paper, 2D and 3D spatially decaying turbulent
(SDT) flows are considered. It simulates a grid-turbulence
with a high kinetic energy at the inlet that decays along
the streamwise direction. A monodisperse spray is injected
through the inlet boundary and follows the main flow while
being locally dispersed by the turbulent fluctuations. It is
particularly interesting to notice that the coupling of va-
porization and turbulent mixing generates a polydisperse
spray, even if the liquid phase is injected monodisperse. This
configuration is also a good candidate since the number of
dimensions of the phase space remains reasonable. More-
over, the results are statistically stationary.

To ensure a statistically coherent behavior of the in-
jected droplets with local turbulence, four solvers (fig. 1)
are running simultaneously. An independent spectral code
is solving the incompressible Navier-Stokes (NS) equations
coupled with a one-way Lagrangian solver for the computa-
tion of the dispersion of solid particles. These two solvers
are used to generate accurate turbulent boundary conditions
for a physical space DNS solver (sixth order in space and
third order in time) running along with another one-way
Lagrangian solver. The fully compressible NS equations are
then solved with periodic boundary conditions along the
spanwise direction and NS characteristic boundary condi-
tions (Poinsot and Lele, 1992) for the inlet and the outlet
along the streamwise direction.

A forced turbulence, such as in Overholt and Pope
(1998), is simulated in the spectral space so that the pre-
scribed main properties of the turbulence (kinetic energy,
dissipation, integral scale) are statistically stationary in
time. The dispersion of particles in the phase space has been
checked to be in dynamical equilibrium before the coupling
with the physical space solvers took place.

Figure 2: Vorticity isocontours of the decaying turbulence.

This coupling is done trough the inlet boundary of the
physical space solver where the turbulent fluctuations as well
as the incoming particles are inserted. Because of the pres-
ence of the spectral solver, the vortices are really able to
rotate at the boundary and therefore, local negative veloci-
ties may be considered. The technical details of the injection
procedure may be found in Vervisch-Guichard et al. (2001).
Once injected in the physical space DNS, the previously solid
particles are considered as droplets of liquid and they are va-
porizing following a d-square law and undergoing the drag
force effects. Again, a one-way interaction with the turbu-
lent flow is used to describe the dispersion of the droplets.
It allows us to keep identical turbulence parameters while
the spray properties are modified.

Before presenting the various test cases and results of
this work, normalization parameters should be introduced.
They are based on the properties of the flow and the spray.
The droplets geometry is expressed in term of surface and it
is normalized by their unique (monodisperse) injection value
so. The motion of the droplets in the gaseous flow and their
evaporation rate lead to the characteristic times 7p and 7y
(table 1); 7p is the velocity response time (or kinetic time)
of the droplets, quantifying their ability to follow or not the
fluctuations of the flow, and 7, = —so/R is the vaporization
time based on the initial size. They have to be compared
with 7¢, the turbulent eddy turn over time. It leads to the
following normalized d-square law : s/so = 1 —t/7y. The
other parameters are the career phase mean velocity U and
consequently, the characteristic distance L = U * 1 covered
by a droplet before its total vaporization.

SPRAY TURBULENT DISPERSION

Statistical considerations

The study of the dispersion of droplets in a spatially
decaying turbulence implies to define some new parameters.
An individual tracking has been introduced for every droplet
in the flow whose Lagrangian time, position, velocity and
surface are (¢, xq, Vg, s4(t;)). As soon as a droplet is in-
jected and begins to evaporate, it is associated to a ‘reference
particle’ whose initial properties (t;, Xr, U, sr = 54) are the
same. The reference particle travels at the mean stream-
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Figure 3: 3D (top) and 2D (bottom) droplets dispersion
in a spatially decaying turbulence. dots : Droplets, iso-
grey-colors : vorticity.

wise velocity whereas its corresponding droplet undergoes
the turbulence fluctuations. By statistically studying the
difference of position and velocity between the real droplet
and its ‘reference’, we may characterize the turbulent dis-
persion. The dispersion statistics are then deduced from the
following parameters : x* = xg — Xr, v* = Vg4 — U and
€ = 55 —s0(l —zq/L). € is the relative surface between
the tracked droplet and a droplet that would be at the same
position without undergoing the turbulence.

Statistics are considered in time and along the spanwise
direction.

Spray polydispersion

Examples of instantaneous 2D and 3D distributions of
droplets are shown in figures 3. A qualitative comparison
between 2D and 3D simulations showed a similar evolution
of the spray properties. The figure 4-(a) shows an example
of the evolution of the coupled PDF : P(z, s) of the droplets
streamwise position z and their surface s. It allows us to
observe the joint effects of the evaporation and of the tur-
bulence on the injected spray. Several positions of analysis
along both z and s directions have been plotted. These po-
sitions labeled respectively ; (i =1 to 6) and s; (j = 1 to
5) have been extensively used in this work. The profiles of
P({z,s) along the z direction for the fixed surfaces s; show
(fig. 4-(c)) a symmetrical Gaussian dispersion around a ref-
erence position /L = (1 — s;j/s0) corresponding to the
position of a droplet with the same s; surface but which did
not undergo the turbulence. Similarly, a spreading of the
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Figure 4: Isocontours (top) and profiles (bottom left and
right) of the pdf P(s,z). The profiles are made along both
z (bottom right) and s (bottom left) directions for several
different positions shown on the top figure. z1/L = 0.092,
w2/L = 0.198, 23/L = 0.304, x4/L = 0.41, z5/L = 0.516,
ze/L = 0.622, and s1/sg = 0.95, sa/so = 0.85, s3/so =
0.72, s4/sg = 0.58, s5/s0 = 0.48

droplets surface may be observed (fig. 4-(b)) for a given z;
streamwise position. But, on the contrary to the previous
profiles, the dispersion is not symmetric around the reference
surface s] /so = (1 — z;/L) corresponding to the surface of
a vaporizing droplet moving with the reference velocity U.

It is possible to examine the PDF : P(u*) correspond-
ing to the droplets velocity fluctuations with regard to the
gas mean flow. Indeed, as it will be shown later, a distinc-
tion has to be made between the gas phase mean velocity
and the particles mean velocity. The u* statistics have been
made for every droplets without any distinction of class and
a Gaussian shaped dispersion may be observed along the
streamwise direction. Figure 5 depicts the fact that P(u*)
develops a general Gaussian shape centered on u* = 0.
Three profiles of P(u*) extracted from the DNS are plotted
figure 5-(a) along with the corresponding PDF presumed
from the first two moments (%*,o) of the velocity disper-
sion. A Gaussian shape function (3) has been used. ¢ has
been determined from the values of P(u*) extracted from
the DNS. The Gaussian presumed shape and the DNS data
are similar. That confirms a Gaussian behavior of dispersion
for the droplets considered as a whole without reference to
their size. Moreover, the Gaussian curves being centered on
u* = 0, the mean droplets velocity is equal to the mean
flow velocity (as soon as the droplets are not considered by
classes).

The droplets energy o has been determined for every
streamwise position and compared to the gas decaying ki-
netic energy k on figure 6. For each droplet family, va-
porizing and non-vaporizing cases have been plotted. As
expected, it is possible to observe a mass-dependent behav-
ior of the droplets. The light droplets (T0Vx, x= 0, 1), with
a small Stokes number (S; = 0.06), follows closely the tur-
bulent fluctuations of the gas. As soon as the droplets mass
(and therefore Stokes number) increases (T2Vx), the iner-
tia of the droplets is increasingly significant and they do
not capture any more the whole fluctuations of the career
phase. Thus, for a given spray, three energy levels can be
differentiated according to the characteristic kinetic time of
the droplets : k the real level of the gas kinetic energy, s,
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Figure 5: Profiles of P(u), lines : DNS extracted, sym-
bols : corresponding Gaussian reconstruction (circles : zi,
squares : 3 and triangles : zg).
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Figure 6: Comparison of the spatial evolution of the
droplets energy o with the gas turbulent kinetic energy k.

the level seen by the droplets and ¢ the level reached by
the droplets. For light droplets with small 7,, these levels
are coinciding. As soon as 7, increases, the three levels are
differentiated with a fixed hierarchy : k > kp > 0.

Surface conditioned dispersion

The spray is initially monodisperse but it undergoes the
effects of both droplets vaporization and turbulence mixing.
These two phenomena lead to a polydisperse spray in both =
and s directions of the phase space. In the previous section
it has been shown that the spray position dispersion for a
fixed droplet surface follows a Gaussian behavior. Now, It
seems interesting to focus on the velocity behavior of the
droplets considered class by class.

First, from an analytical point of view, it is possible to
affirm that the mean velocities of the droplets depend on
their surface for a given Eulerian position z. At any z po-
sition and by using the reference parameters £ and u*, we
know that the droplets such as £ = 0 and u* = 0 have the
same mean properties than the reference droplets which did
not undergo the turbulence. If £ > 0, then the droplet sur-
face is larger than the reference one. Thus, these droplets
traveled more quickly than the average flow. In the same
way, the droplets such as £ < 0 went more slowly. This is
confirmed by figure where the mean droplet velocity con-
ditioned by droplets surface (u* | £) has been plotted. The
analysis have been done for several Eulerian position previ-
ously defined (fig. 4). Close to the injection (1), the surface
range dispersion is limited but, because of the high turbu-
lent energy of the flow, velocity levels of the droplets are the
highest. As the droplets move away in the flow, their sur-

04

02 ¢

x1

§/s0

s§< €

04
-05

[ Y 1 15
(2*/uy | 50)

Figure 7: Mean droplet velocity conditioned by the
droplet surface (TOV1, Eulerian positions : z;, i = 1,6).

face range increases but their mean velocity range decreases
because of the weaker turbulent mixing.

The conditioned mean velocity being known, it is now
particularly interesting to focus on the velocity dispersion
of the droplets around this mean. Figure shows, for a
given streamwise position, the PDF : P(u,s) representing
the velocity dispersion as a function of the droplet surface.
Gaussian reconstructions around this mean value have been
carried out. The presumed isocontours are shown figure
(dotted contours) and are very close to the dispersion lev-
els extracted from the DNS (plain contours). It appears
that even by considering the dispersion as a function of
the droplets surface, it follows a Gaussian law. But this
is true only around the mean velocity of the particles and
not around the local mean velocity of the gas flow, the two of
them being different. Moreover, an integration of the disper-
sion along the s direction gives a global Gaussian dispersion
around the mean flow velocity (fig. 5). But the correspond-
ing energy o is a global property for the whole spray and it
does not allow a description of the dynamic of every class of
droplets. This dynamic highly depends on the mass of the
droplets, thus, to have an accurate description of their dis-
persion, a surface dependence should be introduced in any
model developed to describe the dispersion of evaporating
or polydisperse droplets.

Examples of the surface conditioned energy o(£) are
shown figure 9 for both TOV1 and T2V1 cases. The statistics
have been extracted for the reference Eulerian positions and
correspond to the agitation energy of the droplets around
their mean velocity. For the whole Eulerian positions, the
light droplets have a similar o(£) whatever the droplet sur-
face is. In fact, even the ‘heaviest’ (£ > 0) of the light
droplets (TOV1) are small and follow the turbulent fluctu-
ations of the career phase without noticeable damping due
to their inertia. Therefore, o(£) is almost constant for every
value of the surface. On another hand, the vaporizing heavy
droplets case (T2V1) leads to another conclusion. Indeed,
because of their large Stokes number, the droplets proved
to have an inertial behavior, going through turbulent struc-
tures without fully undergoing every one of them. Two main
conclusions can be drawn from the figure 9-(b). First of all,
for every increasing analysis Eulerian position (z1, z2, ...)
the general energy level (&) increases as well because the
droplet loss of mass implies a decrease of the effects of their
inertia. In the same way, for a given analysis position, the
dependence of o(€) with the surface of the droplets (&) is
significant and follows a quasi-linear behavior.
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Figure 8: Comparisons of the spray velocity dispersion
function P(u,s) (black lines) with a presumed Gaussian
shape dispersion function (dotted lines), case TOV1, Eu-
lerian position : zg.

MULTI-FLUID MODELING

The fact that the turbulent dispersion of a vaporizing
sprays is a surface conditioned phenomenon is very coherent
with the work done on the Eulerian multi-fluid modeling
of polydisperse sprays conducted in Laurent and Massot
(2001). The purpose of this section is to present the deriva-
tion of such an approach in the turbulent case and the
associated numerical methods.

Derivation of the model

The spray is described at the kinetic level by a dis-
tribution function f(¢,z,s,V;) which satisfies a transport
equation introduced by Williams (1958) :

%{+Vd-vzf+a%i+wd(ff)=0, )
where F is the Stokes drag acceleration. The vaporization
rate R is assumed to be independent of U, thus neglect-
ing the convective correction term (see Laurent and Massot
(2001) for detailed modeling assumptions).

For turbulent flows, the gas velocity seen by the particles
can be decomposed into U = U+-U”’ , U, its average value and
U’, a fluctuation which is assumed to be a Gaussian Wiener
process characterized by a Lagrangian correlation time along
the trajectories 74 as well as a turbulent kinetic energy kKp.
It is at this level that we can choose the scales which will
be resolved. In this paper, for the first investigation of the
Eulerian multi-fluid model, we will consider that the fluc-
tuation describes the whole turbulence of the gas and the
average value will be taken as the mean gas velocity. The
LES point of view will be investigated in a subsequent study.

Once the scales have been chosen we need to derive a ki-
netic equation “in the mean” where the effects of the gas tur-
bulence only appear through its characteristics quantities 74
and kp. We use the framework introduced by Reeks (1991)
and justified rigorously in Clouet and Domelevo (1997). We
obtain an equation on the average for f, which is the statis-
tical expectation of f; it reads :

9 = ORf -
g{“"Vd'vwf'fTsf‘ﬁ'de(}-f) (2)
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Figure 9: Droplet velocity dispersion parameter o as a func-
tion of the droplet relative surface £. Left : TOV1 case, the
profiles are similar, right : T2V1 case a significant effect of
the droplet volume may be observed on the dispersion.

where the averaged drag force reads:

F

1 —
— U -Vy).
Tp §

The random fluctuations in the gas velocity then generate,
on average, a diffusion process in the phase space. This
approach requires the use of a simple vaporization model,
which decouples the vaporization process from the velocity
fluctuations; in a more general case, some additional terms
should be added in (2). An exact expression of the diffusion
coeflicients can be obtained as functions of 74 and Kp along
the lines given in Clouet and Domelevo (1997) and Reeks
(1991).

Once the kinetic equation “in the mean” is derived, we
can generalize the framework of the Bulerian multi-fluid
model to the present case. Asin Laurent and Massot (2001),
we make an assumption on f which appears as a closure at
the kinetic level. We assume that, for a given size, there is
only one characteristic velocity, with a Gaussian dispersion
around it:

fT(t, T, S, ‘/d) = n(ta Z, 3) <f)a(t,.’v,s)(vvd - Vd(ta xz, 5))?

where . is a Gaussian of dispersion ¢ in the d-dimensional
space :
1 v?
Po (V) = ——— = exp (— 4—> : ()
(470) " Qo

d

We will then obtain the semi-fluid equations on the three
moments n, Vy and o, which can be interpreted as an inter-
nal energy of a monoatomic gas. From equations 2 and 3 it
is possible to derive an Eulerian semi-fluid model that will
not be detailled in this paper. Interested reader may refer
to Laurent and Massot (2002). The system describes the
evolution of the density of droplets, their velocity and their
internal energy.

Resolution and results
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Figure 10: Droplet number density in the frame moving with
the mean flow for various droplet sizes. Symbols : DNS
statistics (circles : s2, squares : s3, triangles : s4, losanges :
s5). Lines : Eulerian multi-fluid simulations, T2V1 case.

An initial surface s; = 0.95 is selected close to the in-
jection point. Initial fields of density, velocity and internal
energy as a function of £ are extracted from the s; DNS
profiles. The resulting initial value problem for the system
of equation is then resolved using a MUSCL second order
extension of finite volume method with a minmod slope lim-
iter and an explicit second order time discretization on a
fine discretization which is reachable in this one-dimensional
problem.

Comparisons between DNS statistics issued from the La-
grangian dispersion of the droplets and the Eulerian resolu-
tion of the multi-fluid model are shown in figures 10 and 11.
For both heavy {(T2V1) and light (TOV1) droplets, the evo-
lution of the density of droplets is accurately captured by the
multi-fluid formulation(fig. 10). Moreover, in the case T2V1
where the droplets are not strictly following the gas evolu-
tion, the Eulerian resolution of the evolution of the droplets
conditioned velocity and internal energy has been captured
by the model (fig. 11).

CONCLUSIONS AND ACKNOWLEDGMENTS

For the first time, comparisons between a DNS (coupled
with a Lagrangian solver) of a statistically stationary turbu-
lent two-phase flow and a Eulerian model dedicated to spray
dispersion have been carried out. DNS showed its ability to
capture the evolution of some complex interactions between
the flow and the vaporizing droplets. Then, the Eulerian
multi-fluid model, has been resolved and compared with the
DNS resuits. The multi-fluid model proved to be able to
capture the evolution of a polydisperse vaporizing spray in a
turbulent environment. This is a very encouraging result for
the modeling of complex configurations such as combustion
chambers. Indeed, even if more tests and developments are
needed, the multi-fluid formulation may be an alternative to
the actual Lagrangian model which may have difficulties to
capture some phenomena such as coalescence or break-up of
the droplets.
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