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ABSTRACT

Active control of Taylor-Gétler vortices in turbulent
curved channel flow is studied by direct numerical simula-
tions. The drifting Taylor-Gétler vortices are identified by
a new proposed algorithm which is based on the wavelet
transform of the wall information. The opposition con-
trol similar to Choi, Moin & Kim (1994) is applied to a
turbulent curved channel flow to attenuate the large scale
Taylor-Gétler vortices and the attendant small scale vor-
tices near the wall. Several active cancellations are tested
to assess the effectiveness of the controls. It is found that
a combined active cancellation at the concave wall makes
the Taylor-Gdtler vortices break up to smaller vortices and
weaken their strengths and contributions to Reynolds stress.

INTRODUCTION

Turbulent flow with streamline curvature is of consider-
able engineering interest. Taylor-Gé&tler vortex is the charac-
teristic flow structure closely related with concave streamline
curvature. Although the geometry of a concave wall is not
very complex, the boundary layer that develops on its sur-
face is difficult to model due to the presence of streamwise
Taylor-Gétler vortices (Lund, 1996). The presence of Taylor-
Gotler vortices makes the flow on a concave wall to be
three-dimensional rather than two-dimensional. Bradshaw’s
comprehensive review of effects of longitudinal streamline
curvature on turbulent flow is that the effect of any extra
rates of strain, such as that imposed by streamline curva-
ture, is often an order of magnitude more important than
the explicit effects of the extra tethat appear in the equa-
tions of motion (Bradshaw, 1973).

Taylor-Gotler vortices were first studied as a kind of flow
stability problem (Gétler, 1940). The boundary layer in-
stabilities induced by wall curvature were reviewed by Saric
(Saric, 1994). A literature survey reveals that many exper-
imental and numerical studies have been made on Taylor-
Gotler vortices in turbulent flows over concave surfaces (Pa-
tel & Sotiropolous, 1997). Taylor-Gétler vortices are very
important in the establishment of the asymmetry between
the concave and convex walls in the curved channel. Moser &
Moin (1987) found that Taylor-Gétler vortices make a signif-
icant contributions to the concave-side Reynolds stress, but
they contribute negligibly to the convex side. The induced
upwash and downwash motions serve as effective agents to

transport streamwise momenturm normal to the wall, thereby
increasing the skin friction. The secondary flow induced by
wall curvature is then very closely related with the genera-
tion of skin friction drag (Lund & Moin, 1996).

Choi, Moin & Kim (1994) investigated an active con-
trol strategy for the purpose of drag reduction in turbulent
channel flow. The control algorithm is based on the input
velocity at the wall, which is proportional and opposite to
the Instantaneous velocity at a location near the wall. By
controlling either the normal or the spanwise velocity at the
wall, they achieved 20 — 30% reduction in the skin friction.
In present study, a similar control algorithm is applied to a
turbulent curved channel flow to attenuate the large scale
Taylor-Gétler vortices and the attendant small scale vor-
tices near the wall. Several active cancellations are tested
to assess the effectiveness of the controls. It is found that
a combined active cancellation at the concave wall makes
the Taylor-Gétler vortices break up to smaller vortices and
weaken their strengths and contributions to Reynolds stress.

DIRECT NUMERICAL SIMULATION

A direct numerical simulations of turbulent curved chan-
nel flow is performed. Fig. 1 shows a schematic diagram of
the flow domain and the coordinate system. The flow do-
main is a sector between two concentric cylinders. We use
r, § and z to denote the radial, azimuthal and axial direc-
tions respectively. As shown in Fig. 1, R = (R; + R,)/2
is the mean radius, H = (R, — R;)/2 is the half channel
width, where R; and R, are the radius of the inner and
outer cylinders, respectively. The ratio ¢ = H/R is defined
as the curvature parameter.

The three-dimensional time-dependent incompressible
Navier-Stokes equations are solved by a spectral method.
To employ Chebyshev polynomials and Fourier series, the
(r,0, z) coordinates are transformed into (z, y, z) coordinates
by

R6 r—R z
= —— = = -, 1
7 Y T YT (1)
with
r€(0,Ls], ye[-1,1], z€[0,L:] (2)

Here L; = 2n/a, L, = 2n/B. « and B are the basic wave
numbers in z and z directions. The flow is driven by the
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Figure 1: Flow geometry and coordinate system.

mean pressure gradient in z direction. x, y and z are referred
to as streamwise, wall normal and spanwise directions, re-
spectively. The corresponding velocity components are u, v
and w.

A Chebyshev-collocation method is used in the wall nor-
mal direction and a dealiased Fourier-Galerkin method is
adopted in the streamwise and spanwise directions for the
spatial discretization. A third-order time-splitting method
is employed to carry out the time advancement ' (Karni-
adakis, Israeli & Moin, 1991). Periodic conditions are used in
streamwise and spanwise directions, and no-slip conditions
are applied at the walls. All the simulations are performed
with constant streamwise mass flux. The control to the
flow through blowing and suction or sliding at the wall is
realized by direct consideration of the wall boundary con-
ditions (Choi, Moin & Kim, 1994). The Reynolds number
is Rem = 2600 based on the bulk mean velocity Um and
channel half width H. The curvature parameter is cho-
sen as €7 = 0.0127, which is the same as Moser & Moin
(1987). The domain extends to 4m X 2 X 87/3 in the stream-
wise, wall-normal and spanwise directions, in concert with a
grid size of 64 x 64 x 64. For the validation of the domain
size, the correlation functions are compared with those of
Moser & Moin (1987). In wall units, the effective grid spac-
ing is Az = RY A6 = 36 in the streamwise direction and
Azt = 12 in the spanwise direction. In the radial direction,
the maximum grid spacing is Ay;*,'mx = 8.2. A time step of
At = 0.01H/U,, is used in the present simulation.

Due to the existence of Taylor-Gotler vortices, two types
of averaging are employed in the present study. Supposing
g is a flow quantity, we use § =< q >z,,,+ to denote the
average in z, z and t, and § =< ¢ >z ¢ to denote the average
in just ¢ and ¢t. Hence § — barg describes the state of Taylor-
Gotler vortices. The fluctuations of ¢ with respect to g is
defined as ¢ = ¢—@ and referred to as total turbulence, while
the fluctuations with respect to ¢ is defined as ¢’ = ¢ — §
and referred to as underlying turbulence. It is obvious that
¢ -q¢"=¢-17

Because of the asymmetry of the curved channel with re-
spect to the channel centreline, the wall values at the convex
and concave walls are different (Moser & Moin, 1987). The
shear stress at the convex wall (inner wall } is

( 1 dﬁ) (3)
T; = e )
! Redy/ ,—_;
while the shear stress at the concave wall (outer wall) is
1 da
= | == . 4
=% dy)y=1 @

The mean streamwise pressure gradient to maintain a con-

(a)

b) 1=1250

Figure 2: Streamwise averaged (v, w) vectors on (y, z)-plane
and variation of the wall shear stress in the spanwise direc-
tion at (a) t=1050; (b) t=1250; (c) t=1450.

stant mass flux can be determined by

ap 1-e?n+01+ €)270
8r 2

(5)

Accordingly, three different wall friction velocity can be de-
fined accordingly:

T; To 18p
Uri = ;» Uro = ;’y Urg = ;&

Throughout this paper, the subscript “;” denotes the convex
wall, “,” the concave wall and “y” the global variable.

To ascertain the accuracy and reliability of the present
simulation, the mean velocity profile and turbulent intensi-
ties are compared with those of Moser & Moin (1987) and
they show a good agreement.

IDENTIFICATION OF TAYLOR-GOTLER VORTICES

In general, Taylor-Gétler vortices (TGVs) can be made
stationary by introducing artificial disturbances upstream
of the curved section (Moser & Moin, 1987). In the
present computation, Taylor-Gotler vortices themselves act
as the analogous upstream disturbances by using the peri-
odic boundary conditions in streamwise direction. Nothing
can precludes them from moving in the spanwise direction.
Accordingly, the strength and effects of the Taylor-Gotler
vortices are underestimated by conventional temporal aver-
age. In the present study, the drifting Taylor-Gétler vortices
in the spanwise direction are identified by adopting a condi-
tional average.

Before describing the identification method used in
present study, we first explain the “location of the drifting
TGVs”. As mentioned earlier, TGVs are large streamwise
counter-rotating cells. Between the vortices, the flow away
from the concave wall is relatively stronger than the flow
towards the concave wall. At the boundaries between the
vortices where the fluids move away from the concave wall,
the boundary layer thickness is greatest and the skin friction
is lowest (Moser & Moin, 1987). The streamwise aver-
aged (v, w) vectors along with the spanwise variation of the
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Figure 3: Marr wavelets and their Fourier coefficients.

streamwise averaged wall shear stress at three different time
instants are displayed in Fig. 2. At ¢t = 1050, the drifting
TGVs is located at about z = 3.0, while it moves to z = 2.2
at t = 1250 and to z = 1.4 at t = 1450. Compared with
the corresponding vector plots, the spanwise variations of
the concave wall shear stress take local minimum values at
the locations of TGVs. However, the local minimum points
of du/dyly=1 are not always equivalent to the locations of
TGVs. This is because the wall information is firectly in-
fluenced by the near-wall small scale structures. According
to the linear stability, a relationship between the maximum
amplification wavelength () and the curvature parameter
(€) is A% ~ €% Usually the wavelength of the TGVs is of
the order of channel width, which is much larger than the
turbulent coherent structures. A multi-scale decomposition
by the wavelet analysis can help us to distinguish the points
of the TGVs from the streamwise vortices.

In present study, a continuous wavelet transform with
Marr wavelets is employed to decompose the flow signals at
chosen scale (Farge, 1992). The mother function of Marr
wavelets is

. 2
$(e) = (1 - 22)e="/2, (7)
Its Fourier transform is
- k2 2
P(k) = Nor k%2, (8)

The wavelets can be constructed from mother function by
dilation and translation as

!

i (z) = 17 B

)s (9)

where [ and z’ are the scale and position parameters, repre-
senting the dilation and translation of the wavelets respec-
tively. Accordingly, their Fourier transform are

Yror (k) = 159 (lk)e= " (10)

Fig. 3 shows Marr wavelets and their Fourier transforms at
{=1,0.75,0.5. We can see that the width of the wavelets de-
crease with decreasing the scale and the wave number band
becomes wider and moves to the higher wave number side.
The continuous wavelet transform of a function f(z) is

~ Foo Heo
f,2'y = / F)} (2)dz = / FkYGy,, (k)dk.

o0 —o0

(11)

The wavelength of the TGCVs can be estimated and the
scale of the wavelet can then be determined. In the present
study, the maximum amplification wavelength (A) is esti-
mated from the maximum energy spectra of the wavelet
coefficients. In present study, € = 0.0127, the wavelength
of TGVs is about A ~ 4, which satisfy the instability theory

Figure 4: Using wavelet coefficients of dw/8y|y to identify
Taylor-Gdtler vortices. (a) dw/8y|w and its wavelet coeffi-
cients; (b) (v, w) vectors.

(Saric, 1994). Accordingly, we can chose [ = 0.75 in the
wavelet analysis.

Also because the vortices are counter-rotating, at the
outflow boundaries between TGVs, the spanwise velocity
w equals to zero. Hence we can use the zero-crossing of
Ow/dyly=1 as well as the local minimum of du/dyly=1 in
the spanwise variation to identify the location of TGVs. Be-
cause the distribution of the local minimum of can be greatly
influenced by wall actuation, for consistency, we use the zero-
crossing of dw/dyly=1 to identify TGVs in controlled and
uncontrolled flows.

Because the vortices are counter-rotating between the
TGVs, the spanwise velocity (w) goes to zero near the wall.
Hence, we can use the zero-crossing of dw/8y|y=1 as well as
the local minimum of du/8y|y=1 in the spanwise variation
to identify the location of TGVs. Since the local minimum
of Gu/dyly=1 can be greatly influenced by wall actuation
(Choi, Moin & Kim, 1994), the zero-crossing of Ow/Oyly=1
is employed in the present study. Fig. 4 shows an exam-
ple of the identification by using the wavelet coefficients of
Ow/dyly=1. The dashed line in fig. 4(a) shows the distri-
bution of streamwise averaged 8w /8yl,=1 in the spanwise
direction and the solid line is its wavelet coefficients.

The dashed line is very fluctuating and has many zero-
crossing points. The wavelet coefficient represents a filtered
signal at the chosen scale. The corresponding (v, w) vectors
in (y, 2) plane are displayed in Fig. 4(b). Three Z€ro-crossing
points with a positive spanwise slope are detected, which
are indicated by “A”, “B” and “C”, respectively. A closer

" inspection of the vector plots discloses that the locations of

the TGVs are identified by the three points. Other three
zero-crossing points with negative spanwise slope indicate
the position between two TGVs at which the flow is directed
toward the concave wall.

The method of identifying the TGVs is summarized as:

1. Calculate the spanwise distribution of the streamwise
averaged dw/dy|y=1;

2. Apply the wavelet transform for the above signal at the
chosen scale;

3. Choose the zero-crossing points with positive spanwise
slope of the wavelet coefficient.

The locations of TGVs at different time instants are
shown in Fig. 5. There are two pairs of TGVs and the mean
wavelength of the TGVs is A ~ 4.0. To get the statistical
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Figure 5: Trajectory of Taylor-Géotler vortices.
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Figure 6: (v, w) vectors, Reynolds stress contours and vari-
ations of wall shear stress in the spanwise direction.

properties of TGVs, an ensemble average is performed. The
ensemble average is taken along the center positions of the
TGVs. The statistics are obtained by averaging the sample
flow fields in the streamwise direction and in time. More
than 1000 realizations of velocity and pressure in the whole
computational domain are stored and averaged.

The ensemble averaged (v,w) vectors and Reynolds
stress in (y, z) plane and the spanwise variations of the wall
shear stress are displayed in Fig.6. It is seen that the concave
wall shear stress reaches a minimum between TGVs, while
the convex wall shear stress has a maximum at the corre-
sponding position. In present study, the Reynolds number
based on the bulk mean velocity is fixed at 2600, and the cor-
responding Reynolds number based on wall friction velocity
is Rer; = 153, Re,;o = 182 and Re, = 170, respectively.

CONTROL OF TAYLOR-GOTLER VORTICES

The role of near-wall streamwise vortices has been found
to be very important in a wall-bounded turbulent flow. The
downward sweep motion indeuced by streamwise vortices
very near the wall is closely correlated with skin friction
(Kim, 1987). Choi, Moin & Kim (1994) investigated an ac-
tive control strategies for the purpose of drag reduction in

Case Acting wall  Dryg Dry

2D v convex 124 31.3
2D w convex 12.2 28.6
2D v concave 13.1 21.0
2D w concave 14.5 23.2
1D v concave -19.6  -26.9
1D w concave -1.3 -0.9
1Dw+2D v concave 11.9 20.4
1IDw+ 2D w concave 7.9 14.4

Table 1: Drag reduction rate(%).

turbulent channel flow. The control algorithm is based on
the input velocity at the wall, which is proportional and op-
posite to the instantaneous velocity at a location near the
wall. By controlling either the normal or the spanwise ve-
locity at the wall, they achieved 20 — 30% reduction in the
skin friction. In this section, a similar control algorithm is
employed to attenuate the TGVs and to reduce the drag.
In the following, we use “2Dv” and “2Dw” to denote two-
dimensional controls by the wall blowing/suction velocity (v)
and wall sliding velocity (w) at y* & 10, respectively. “1Dv”
denotes one-dimensional control in the normal velocity (v) at
y+ 2 110. It is seen that the normal velocity of the TGVs is
maximum at yt o~ 110. “1Dw” represents one-dimensional
control in the spanwise velocity (w) at yt = 26, where the
spanwise velocity of the TGVs is maximum. These one-
dimensional controls aim at the attenuation of the TGVs.

The drag reduction rates under eight different controls
are listed in Table 1. The drag reduction rate at each wall is
measured by Dr; = (1 — 7¢/Tno) % 100, where 7n, and 7. are
the mean shear stress at the wall before and after control.
Since the drag reduction rates at the two walls are diffrent, a
global drag reduction rate is defined by the mean streamwise
pressure gradient, Dry = [1 — (dp/dz)c/(df/dx)ne] x 100.
Here (df/dz)no and (dp/dz). are the mean streamwise pres-
sure gradient before and after control. By this definition, the
constant mass flow rate is maintained. As shown in Table
1, the local drag reduction rates by “2D v” and “2D w” at
the convex wall are larger than those at the concave wall.
However, the global drag reduction rates at the convex wall
are smaller than those at the concave wall. This is because
the magnitude of friction drag at the concave wall is larger
than that at the convex wall. It is seen that “2D w” at the
concave wall is slightly more effective than “2D v” at the
concave wall. As mentioned earlier, the main goal of the
control is to attenuate the TGVs by one-dimensional active
cancellation. As shown in Table 1, the cancellation by “1D
v” and “1Dw” are effective in suppressing the TGVs. How-
ever, the local and global friction drags at the wall are not
reduced, even increased. In particular, “1Dv” gives a signif-
icant increase of drag, while “1D w” is weak. Although the
TGVs are suppressed by “1Dv”, the friction drag near the
wall is then increased by the high momentum actuation by
“1Dv” (Hammond, 1998). To achieve the suppression of the
TGVs as well as the drag reduction at the wall, a combined
control is proposed in present study. As shown in Table 1,
an optimum choice is “1D w + 2D v” at the concave wall.
This gives a global drag reduction by 11.9% and a local drag
reduction by 20.4%, respectively.

To see the influences of the eight different controls on
TGVs, (u,w) vectors, Reynolds stresses and wall shear
stresses are displayed in Fig. 7-10. These are obtained by the
afore-stated ensemble averaging in the streamwise direction
and in time. For “2Dv” at the concave wall in Fig. 7 (a), the
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Figure 7: (v, w) vectors and uv contours in (y, z)-plane, and
variations of wall shear stress in spanwise direction for fows
under “2Dv” at (a) concave wall and (b) convex wall.

(a) 2D w control at concave wall (b) 2D wcontrol at convex wall

i ‘

concave wall convex wall

04,

M
o

Figure 8: (v, w) vectors and uv contours in (y, z)-plane, and
variations of wall shear stress in spanwise direction for flows
under “2Dw” at (a) concave wall and (b) convex wall.

TGVs are weakened and the corresponding Reynolds stress
is also attenuated. The shear stress at the concave wall is
reduced similar to the level at the convex wall. There is no
sharp local minimum in the spanwise variation of wall shear
stress between the TGVs. Figure 7 (b) shows the results
of “2Dv” at the convex wall. The TGVs are strengthened
and shifted closer to the convex wall. The Reynolds stress
is also intensified. Not only the local minimum in the span-
wise variation of concave wall shear stress, but also the local
maximum in the spanwise variation of the convex wall shear
stress are found, indicating that the blowing and suction at
the convex wall act as an increase of the curvature in the
previous section. Fig. 8 shows the results of “2Dw”. The
sliding velocity (w) either at the concave wall or at the con-
vex wall can not effectively give an influence on the strength
and the position of the TGVs. The results of “1Dv” and
“1Dw” at the concave wall are shown in Fig. 9. The TGVs
disappear completely under “1D v”, as shown in Fig. 9(a).
This is because an active cancellation is effectively performed
at y™ = 110 by the actuating velocities.

For “1D w”, the TGVs are also greatly suppressed in

e, 4 + +

Figure 9: (v, w) vectors and uv contours in (y, z)-plane, and
variations of wall shear stress in spanwise direction for flows
under {a) “1Dv” and (b) “I1Dw” at concave wall.
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Figure 10: (v, w) vectors and uv contours in (y, z)-plane,
and variations of wall shear stress in spanwise direction for
flows under (a) “1Dw+2Dv” and (b) “1Dw+2Dw” at con-
cave wall.

Fig. 9 (b). As mentioned earlier, “1Dw” is effective in sup-
pressing the TGVs and “2Dv” and “2Dw” are effective in
reducing the wall friction. The combined controls on the
TGVs are displayed in Fig. 10. It is seen that “1Dw +
2Dv” at the concave wall is similar to “ 1Dw + 2Dw” at the
concave wall. They both make the TGVs break up to smaller
vortices, and weaken their strengthes and contributions to
Reynolds stress.

In the present curved channel flow, the mean wall fric-
tion can be decomposed into three parts: ’laminar’, "TGV’
and ’turbulence’, respectively (Moser & Moin, 1987). The
laminar part is the viscous shear stress of laminar flow at
the same mass flux, and it is irreducible by the flow manip-
ulation. In turbulent flow, the Reynolds stress w'¢/ can be
decomposed into

u'v' = (G- a) (B~ 7) + u'v" (12)
where (4 — @)(¢ — ¥) represents the contribution of the
TGVs and u'’v" denotes the contribution of turbulence. The
mean friction is obtained by solving the mean momentum
equation {(Moser & Moin, 1987).
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Case Lmn Tur TGV  Tot
no control 1.14  3.03 0.70  4.87
Concave 2D v 1.14 2.33 0.43 3.91

1Dw + 2Dv | 1.14  2.50 0.20 3.84
no control 1.16 2.25 0.13 3.54
Convex 2D v 1.16  2.16 0.11 3.44
1Dw + 2Dv 1.16 2.34 0.05 3.56

Table 2: Contributions to drag (x1073pU2,).
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Figure 11: Influence of “2Dv” and “1Dw+2Dv” to root-
mean-square of velocity fluctuations and Reynolds stress.
(a) Urmsi (b) Vs (€) wrpns and (d) u'v'.

When the active cancellations are applied at the con-
cave wall, the contributions of the three parts to the mean
wall friction are summarized in Table 2. At the concave
wall, both "turbulence’ and "TGV’ are suppressed by “2Dv”
and “1Dw+2Dv”, compared with ’no control’. In partic-
ular, TGV’ is greatly suppressed by “1Dw+2Dv”. The
portion of "TGV’ to the total wall friction is very small when
“1Dw+42Dv” is applied. However, the role of "TGV’ at the
convex wall is relatively smaller than that at the concave
wall. It is seen that “I1Dw+2Dv” is not effective in reducing
the mean wall friction at the convex wall.

The statistical contributions of the TGVs to the ve-
locity components and Reynolds stress under “2D v” and
“1Dw+2Dv” at the concave wall are displayed in Fig.11.
For comparison, the results of 'no control’ are also included.
It is generally seen that “1Dw-+2Dv” is more effective in
suppressing the turbulent intensities and Reynolds stress.
The suppression by “2Dv” is also apparent. The root mean
square of total turbulent velocity fluctuations and Reynolds
stress are shown in Fig.11 to further depict the influence of
“2Dv” and “1Dw+2Dv”. By the active cancellations, tur-
bulent fluctuations are suppressed near the concave wall,
while they are enhanced at the concave wall. The profiles
are less asymmetric with respect to the channel center. The
asymmetric profiles indicate that the streamwise and nor-
mal fluctuations are mutually correlated on the concave side
rather than on the convex side. This is attribute to the
contributions of the TGVs (Moser & Moin, 1987). Due
to the present cancellations, the asymmetry is recovered to
the symmetry. For example, the zero-crossing point in the
Reynolds stress of 'no control’ is observed at ¥y = —0.2 in
Fig.11(d), while it moves to y = —0.1 in the cancellation.

CONCLUSIONS

A new algorithm has been proposed for identifying the
drifting Taylor-Gotler vortices in turbulent curved channel

flow. A continuous wavelet transform with Marr wavelets
was employed to decompose the flow signals at a chosen
length scale. The positions of the Taylor-Gdtler vortices
were the zero-crossing points with a positive spanwise slope
of the wavelet coefficients. To suppress the Taylor-Gétler
vortices near the concave wall, one-dimensional active can-
cellation was applied. The one-dimensional active cacella-
tion in the wall normal direction was effective to attenuate
the Taylor-Gotler vortices. However, due to the high mo-
mentum actuation at the wall, the friction drag near the
wall was increased. To achieve the suppression of the Taylor-
Gotler vortices as well as the wall friction reduction, a com-
bined control was imposed at the concave wall. The drag
reduction was estimated by 11.9% globally.
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