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ABSTRACT

In this paper we shall provide an overview of the
endothelial surface layer (ESL) or glycocalyx in
several roles, as a transport barrier, as a porous
hydrodynamic interface in the motion of red and white
cells in microvessels and as a mechanotransducer of
fluid shearing stresses to the actin cortical
cytoskeleton of the endothelial cell (EC). These
functions will be examined from a new perspective,
the quasi-periodic ultrastructural model proposed in
(Squire et al, 2001) for the three-dimensional
organization of the ESL and its linkage to the
submembranous scaffold. We shall show that the core
proteins in the bush-like structures comprising the
matrix have a flexural rigidity, EI, that is sufficiently
Stiff to serve as a molecular filter for plasma proteins
and as an exquisitely designed transducer of fluid
shearing stresses. However, £/ is inadequate to
prevent the buckling of these protein structures during
the intermittent motion of red cells or the penetration
of white cell microvilli. In these cellular interactions
the viscous draining resistance of the matrix is
essential  for preventing adhesive  molecular
interactions between proteins in the endothelial
membrane and circulating cellular components.

OVERVIEW

While the endothelial surface glycocalyx was first
identified by special electron microscopic (EM)
staining techniques nearly forty years ago (Luft, 1966),
it is only relatively recently that this surface layer has
been observed in vivo (Vink and Duling, 1996), and
the importance of its multifaceted physiological
functions recognized. Key among these functions are
its role as a molecular sieve in determining the oncotic
forces that are established across microvessel
endothelium (Hu et al, 2000, Hu and Weinbaum,
1999; Michel, 1997; Weinbaum, 1998), its role as a
hydrodynamic exclusion layer preventing the
interaction of proteins in the red cell and endothelial

cetl membranes (Damiano, 1998; Feng and Weinbaum,
2000; Secomb et al, 2001a), its function in
modulating leukocyte attachment and rolling (Zhao et
al., 2001), and as a transducer of mechanical forces to
the intracellular cytoskeleton in the initiation of
intracellular signaling(Weinbaum et al., 2003).

It is widely recognized that fluid shearing forces
acting on ECs have a profound effect on EC
morphology, structure and function (Davies, 1995;
Drenckhahn and Ness, 1997). It is now also clear from
theoretical considerations (Damiano, 1998; Feng and
Weinbaum, 2000; Secomb et al., 1998, 2001b) that the
shear stress at the edge of the endothelial surface layer
(ESL) is greatly attenuated by the extracellular matrix
of proteoglycans and glycoproteins in the glycocalyx
with the result that fluid velocities, except near the
edge of the layer, are vanishingly small. Thus, the
shear stress due to the fluid flow acting on the apical
membrane of the EC itself is negligible. This
paradoxical prediction has raised a fundamental
question as to how hydrodynamic and mechanical
forces, more generally, are transmitted across the
structural components of the glycocalyx. How do
these components deform under the action of these
forces and how are these forces and deformations
communicated to the underlying cortical cytoskeleton
(CO).

Little was known about the specific proteins or
generalized structure of the glycocalyx until recently
(Henry and Duling, 1999, 2000; Squire et al., 2001).
The state of knowledge prior to 2000 is summarized in
(Pries et al., 2000). In vivo experiments demonstrated
that hyaluronan and chondroitin sulfate play an
important role in the assembly of the layer and its
sieving properties (Henry and Duling, 2000). Using
computed autocorrelation functions and Fourier
transforms of EM images obtained from both new
(Squire et al.,, 2001) and previous studies (Clough et
al., 1988) of frog mesenteric capillaries, Squire et al.
(2001) were able to identify for the first time the
quasi-periodic substructure of the glycocalyx and the
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anchoring foci that appear to emanate from the
underlying CC. The computer enhanced images
showed that the glycocalyx is a three-dimensional
fibrous meshwork with a characteristic spacing of 20
nm in all directions and that the effective diameter of
the periodic scattering centers was 10-12 nm. Using a
freeze fracture replica from a rare section where the
fracture plane passed paratlel and close to the
endothelial surface, they also showed that anchoring
foci formed an hexagonal array with an intercluster
spacing of typically 100 nm in frog lung capillary.
This latter observation was consistent with the spacing
of bush like structures seen on the plasmalemma of the
fenestrated renal capillaries of the rat using a new
fluorocarbon oxygen fixation technique which
preserved the portion of the glycocalyx close to the
EC surface (Rostgaard and Qvortrup, 1997).

Based on the foregoing observations Squire et al.
(Squire et al, 2001) proposed a model for the
structural organization of the ESL and its relationship
to the EC cortical cytoskeleton. The model provides a
new view of the organization of the matrix that forms
the molecular sieve for the filtering of plasma
proteins. The possible existence of an ordered
structure was first proposed in (Michel, 1983) to
explain why there is a sharp break in the solute
permeability curve for molecules the size of albumin.
These ideas will be used in the present paper to
formulate a mathematical model for analyzing the
transduction of mechanical forces and bending
moments across the ESL. We first address a basic
question: what is the bending rigidity £/ of the core
proteins comprising the glycocalyx that enables them
to resist the randomizing forces of Brownian motion
and deformation by fluid shear stresses? To answer
this question we shall examine the time dependent
recovery of the surface layer after it has been crushed
by the passage of a white blood cell (WBC) (Vink et
al., 1999). Theoretical models are then developed to
explore the deformability of the matrix in both red and
white cell interactions and in response to fluid
shearing forces. The forces and torques exerted on the
structural elements of the ESL by these mechanical
loads are then used to predict the stresses transmitted
to the CC.

A unique feature of the present analysis is the
attempt to couple the dynamic response of the surface
layer to mechanical loading to the stresses and
deformations induced in the underlying CC. This CC
has previously been explored in other contexts
involving the movement of plasma proteins in the
plane of the membrane using single particle tracking
and optical traps (Edidin et al., 1991; Sako and
Kusumi, 1995). These studies, summarized in (Sako
and Kusumi, 1995), have led to a "fence" model
construct in which one observes microdomains as
small as 0.01 um? restricting the movement of proteins

due to the interaction of their cytoplasmic tails with
the underlying cytoskeletal scaffold.
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