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ABSTRACT

Surprisingly expensive to compute wall distances are still
used in a range of key turbulence models. Potentially
economical, accuracy improving differential equation
based distance algorithms are described. These involve an
elliptic Poisson and a hyperbolic natured Eikonal equation
approach. Eikonal extension to a Hamilton-Jacob equation
is discussed. Use of this to improve turbulence model
accuracy and, along with the Eikonal, enhance Detached
Eddy Simulation (DES) techniques is considered.
Although less accurate than the Eikonal, Poisson method
based flow solutions are extrémely close to those using a
search procedure. For a moving grid case the Poisson
method is found especially efficient. Results show that
with care the Eikonal equation can be solved on highly
stretched, non-orthogonal, curvilinear grids.

INTRODUCTION

Wall distances, d, are still a primary parameter in a range
of key turbulence models (Fares and Schroder, 2002).
Surprisingly, for highly optimised RANS/URANS
(Unsteady Reynolds Averaged Navier-Stokes) solvers, the
effort in calculating & can be a significant fraction of the
total solution time. For example, even with Cray C90 class
computers it can take 3 hours just to gain d (Wigton,
1998). For flows with time dependent geometry (such as
Computational Aeroelasticity) or mesh refinement clearly
this feature is exacerbated (Boger, 2001).

Because of d evaluation expense in some codes
dangerous approximations are made (Spalart, 2000). These

will give mostly unhelpful inexact distances d . However,

the careful modification of d to some d can remedy
turbulence model deficiencies or extend modelling
potential (Fares and Schroder, 2002). For example, if

d=d sharp convex features such as a thin wire (referred
to here as the ‘thin wire problem’) or wing trailing edge
can have disproportionate turbulence influences. Wall
proximity reduces eddy viscosity through boosting
turbulence destruction terms. Hence, the excessive
influence of sharp convex features can be lessened by

ensuring d>d . For corners or bodies/surfaces in close
proximity the increased multiple surface turbulence
damping effect (Mompean et al., 1996) should be taken

into account. Setting d <d is a convenient mechanism
for achieving this. Relative to search procedures
differential equation based methods offer the possibility of
both efficiency and accuracy gains. Differential equation
wall distance methods are now discussed.

Differential equation based distance methods

Poisson equation method. A Poisson equation
(Tucker, 2000) d method proposed by Spalding can be
used. For this, the equation
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is solved inside the flow domain Q with boundaries T .
Gradients of ¢ are used to gain d. For curved surfaces the
following near wall accurate L, norm based approximation
is recommended
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Eikonal equation method. To directly gain 4, Sethain
(1999) proposes the following hyperbolically behaved
Eikonal equation
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where ¢ = ¢ — the first arrival time of a propagating front.
The right hand side of unity characterises the front
propagation velocity. For this unit velocity d = ¢. Here a
Laplacian is deliberately added to (3) to give the following
Hamilton-Jacobi (HJ) equation

[Vg|=1+TV?¢ 4

The Laplacian allows control of the front propagation
velocity, U, to gain d. The U can now be considered
equal to(1+T'V?¢)". Eikonal equation solution in non-

orthogonal coordinates is uncertain (Sethain, 2002).
Hence, this aspect is also considered in the present work.



Laplacian form and role. Near a fine convex feature
(wire) for theoretical correctness accurate distances are

needed so d =d . However, to prevent excessive far field

influence d >>d . Since adjacent to a convex feature

T'V?d >>0 ., with Laplacian inclusion the desired effect of
exaggerating d (i.e. delaying first arrival times) is naturally
gained. Motivated by dimensional homogeneity, the need

thatas d —0,d = d but V¢ — o suggests
I'=ed (5)

where ¢ is a constant. Clearly more ‘aggressive’ functions
than (5) (e.g. T =¢&(~1+¢") ) are possible but these are not
explored.
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Figure. 1. Geometries considered: (a) Corner region; (b)
plane channel with thin wire; (c) wing and flap and (d)
double-delta configuration.

At corners V’d <0, hence d <<d. Therefore, with the
Laplacian, the damping effects of ‘extra’ walls, discussed
earlier, is naturally accounted for. The Laplacian also has
the potential to lessen non-smoothness issues (Strelets,
2001) associated with SA (Spalart and Allmaras, 1994)
DES.

NUMERICAL METHOD
Following Sethian for ‘inviscid terms’ the 1% order scheme
due to Godunov is used
%
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The subscripts refer to grid point locations. Equation (6)
ignores non-orthogonal terims. These must be treated in a
manner consistent with (6). When the right hand side of
(6) (RHS;jy) involves diffusion terms or the Poisson
equation is being solved, standard second order central
differencing is used. As results will show, the differences
used in the transformed Eikonal equation Jacobian terms
need to be treated with care. Central differences can be
used or differences upwinded in the propagating front
direction.

Figure. 2. Influence of Laplacian on d at corners: (a)
Eikonal solution and (b) HJ solution.

Starting conditions. For SA DES when using the
Eikonal equation, the following starting condition (initial
guess) is sufficient

¢=C, A inQ ®)

where Cpgs is a modelling constant. The d computation
will naturally terminate when, at the active front,
d2C,A . For most DES implementations d is

needlessly evaluated for all Q. With the current approach
this wasted computational effort is avoided. Also, the d
array is such that, if read into a sufficiently accurate
URANS solver, with the SA model activated, a DES
solution will naturally arise. No code modifications or
needless intrinsic arguments are needed. For Eikonal based
RANS, zonal RANS and the zonal LES of Tucker and
Davidson (2003) the starting condition below can be used

¢=d_  inQ ©)

With zonal RANS/LES d_ could correspond to a

prescribed model interface. For RANS economy, d_,

could characterise the near wall turbulence destruction
term activity range. Here, for internal flows without zonal
modelling d_, — = is used. This is a safe default value.

For Poisson method predictions ¢ =0 in € is adequate.
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Figure 3. Eikonal and HIJ solutions: (a) 3D
Eikonal solution view; (b) 2D Eikonal
solution view and (c) 2D HJ view

Boundary conditions. At smooth solid walls the
following Dirichlet condition is applied

¢=0onT (10)

At flow/far field boundaries
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can be used, where n is the boundary normal co-ordinate.
However, if Q is sufficiently large, (10) makes a stable far
field condition. This is used here for the Poisson method.

Eikonal based equations are tested for overset and abutted
grids. For the abutted, on non-solid surface block
boundaries differential conditions (Equation (11)) are, due
to the interface nature, found adequate. For the overset, a
mono-block grid Eikonal solution is represented on a dual
block flow solution grid. The above two approaches avoid
generating two quite different multi-block Eikonal solvers.

General solution information. When evaluating
Equation (2), away from solid walls second order central
differences are used. For simplicity, with multiblock
solutions at block boundaries first order backward
differences are implemented. The Poisson method
simultaneous equations are solved using a crude ADI
procedure. The Eikonal equation is solved using a
propagating front method (see Sethian, 1999). When
solving the HJ equation, an Eikonal solution is used as an
initial guess and then a Newton solver applied. Modified

versions of two structured grid, flow solvers are used.
These are the NASA CFL3D (Rumsey et al., 1996) and
(a)

Figure 4. Grid and turbulent viscosity
contours: (a) grid; (b) Eikonal contours
and (c) HJ contours

NTS (Shur et al., 1999) codes.

DISCUSSION OF RESULTS

The following Figure 1 geometries are considered: (a)
Corner region; (b) Plane channel with a thin wire; (c)
Wing with flap and (d) Double delta wing configuration.

Corner Region (Case (a)). Figure 2, frames (a) and
(b) give Eikonal and HJ d solutions, respectively. Frame
(b) shows the latter correctly (see DNS data of Mompean
et al., 1996) allows the turbulence model to sense the
damping influence of both corner walls.

Plane channel flow with wire (Case (b)). The ‘thin
wire problem’ is explored using an SA model solution for
a fully developed plane channel flow with a wire (see
Figure 1b) and Re = 1x10°. The wire diameter is 1/40" the
channel width. Figure 3 gives representations of the pure
Eikonal and HJ equation distances. Frame (a) is a 3D
(three-dimensional) representation of the pure Eikonal
solution. Frames (b) and (c) are 2D plots of pure Eikonal
and HJ solutions, respectively. The desired ‘vanishing’
effect of the Laplacian on the wire is evident. Figure 4
gives the over-set flow solution grid and also turbulent
viscosity contours. The Figure 4, frames (b) and (c) give
turbulent viscosity contours for solutions with and without
the Laplacian distance modification. The Laplacian based
modification has helped with the excessive wire influence
but caution is required since £ must not be too large.




Figure 5. Eikonal equation wall distance coloured grid features for wing-flap configuration.

Wing with flap (Case (c)). In a zonal LES (Tucker
and Davidson, 2003) context (for y"<250), Figure 5 shows
Case (c) Eikonal d coloured grid features. As typical for
high-speed flows, the grid is highly stretched in the wall
normal direction. Figure 6 shows top wing surface, mid-
chord, Eikonal d results plotted against normal wall
distance. The frame (a) and (b) vertical axes are d and %
error, respectively. As can be seen, for highly stretched
grids, using upwind based metric differences that are
consistent with the main discretization improves accuracy.
Frame (a) shows, without metric upwinding the d error
grows (i.e. is additive) with surface distance.

The Eikonal and Poisson ¢quation methods have average
d errors of 0.8 and 0.97 %, respectively. Figure 7 gives y*
< 400 error histograms for the FEikonal (with cross-
derivatives) and Poisson based approaches. Negative
errors correspond to d over predictions. For both methods,
conveniently, errors increase away from walls, where, for
turbulence models, they matter less. Clearly, the Frame (a)
Eikonal equation error distribution is most symmetrical.
For the Poisson method (see Frame (b)), there is a d over-
prediction trait. This is partly due to relatively fine convex
features (the Poisson method tends to over-predict d in
such regions which is beneficial) and also because grid
orthogonality has been assumed.

As noted earlier, for this case, the Poisson method is less
accurate than the Eikonal. However, SA model Poisson

method lift and drag coefficients are within 0.05% of those
for the search procedure. These values being for a solution
with Re = 23 x 10°, based on the wing chord and a Mach
number, Ma = 0.18. Around 1 million cells give sensibly
grid independent solutions.

Double delta wing (Case (d})). Figure 8 gives the
Case (d) Poisson method d error histogram. For this more
complex configuration the average error is higher at 2.67
%. The Eikonal equation is not considered for this case.

A key Case (d) motivation is aeroelasticity studies. For
details of the CFL3D mesh deformation approach, that
freshly initialises the d search procedure for each moving
mesh time-step, see Bartels (2000). Figure 9 shows initial
and severely deformed aeroelasticity calculation surface
meshes. For moving mesh performance studies ten
approximately equi-spaced deflection increments between
the Figure 9 extremes are considered. These large
increments and the strongly deformed Figure 9b grid are
intended to give poor cell types that most severely test the
Poisson method. The search procedure takes around 20%
of the time step cost and the Poisson method cost is found
to be 1/6" that for the search. Even, for the far more
challenging fixed mesh case the Poisson method is found
considerably faster than the search.

Encouragingly, the Case (d), CFL3D, SA model based
lift



and drag coefficients for the Poisson method are within
0.03 and 0.06 % of those for the search procedure. These
values being for Re = 2.2x10° (based on the half wing
span), Ma = 0.96 and a modest circa 1 million cell grid.
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Figure 6. Eikonal equation errors for solutions
with an without Jacobian upwinding: (a) Computed
d and (b) Error in d.

CONCLUSIONS

The Poisson method distance algorithm is around twice as
fast as the search procedure. With parallel and vector
processing this could be improved. Although less accurate
than the Eikonal, Poisson method based flow solutions are
extremely close to those using a search procedure. For
moving grids that do not preserve grid topology the
Poisson method is much faster than the search procedure.
It is possible to solve the Eikonal equation on highly
stretched non-orthogonal curvilinear grids. However, this
hyperbolic natured equation is not straightforward to
economically solve and can display instability. For
accuracy, Eikonal metrics must be upwinded in the front
propagation direction. Addition of a distance scaled
Laplacian to the Eikonal equation gives beneficial wall
distance properties that can reduce the ‘thin wire problem’.
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