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ABSTRACT

To clarify the scaling law of fine scale eddies in turbulent
channel flows, direct numerical simulations are conducted
for Re,=180, 400 and 800. The diameter and the maximum
azimuthal velocity of coherent fine eddies can be scaled by
Kolmogorov micorscale (1) and Kolmogorov velocity (uy).
The most expected diameter and maximum azimuthal veloc-
ity are 8 ~ 10n and 1.2 ~ 2.0uy, respectively. Near the wall,
the most expected diameter increases to 10n from 87 and
the most expected maximum azimuthal velocity increases to
2.0uy, from 1.2uy. Strain rates at the center of the coherent
fine scale eddies is small compared with the mean strain rate
of the whole flow field. The strain rates acting on the fine
scale eddies away from the wall coincide with those in ho-
mogeneous turbulence and turbulent mixing layer. However,
relatively large strain rates are acting on the near-wall co-
herent fine scale eddies. The most expected angle between
the intermediate eigen vector and the rotating axis of the
fine scale eddy is about 15~17degrees, which is independent
on the turbulent flow fields. The probability that coherent
fine scale eddies exist in low-speed streaks is higher than
that in high-speed streaks. Large scale structures of wall
turbulence are visualized by showing spatial distributions of
central axes of coherent fine scale eddies.

INTRODUCTION

Theoretical description of intermittent character in small
scale motion have been one of the most important subjects
in turbulence research. Theorists have made efforts to estab-
lish a theory of fine scale structure of turbulence by assuming
various type of vortices as fine scale structure (Townsend,
1951; Corrsin, 1962; Tennekes, 1968; Lundgren, 1982; Pullin
et al., 1993). Most of them are based on an assumption
that many tube-like vortices are embedded in turbulence
randomly. Owing to direct numerical simulations (DNS) of
turbulence, it has been found that turbulence is composed of
universal fine scale eddies, which are verified in homogeneous
isotropic turbulence (Jimenez et al., 1993; Tanahashi et al.,
1999a), turbulent mixing layer (Tanahashi et al., 2001) and
turbulent channel flow (Tanahashi et al., 1999¢c). In turbu-
lent mixing layers, large scale structures which were found
by Brown & Roshoko (1974) are composed of coherent fine
scale eddies (Tanahashi et al., 2001). In turbulent chan-
nel flows, well-known streamwise vortices possess the same
feature as the coherent fine scale eddies (Tanahashi et al.,
1999b, 1999c). The characteristics of these eddies in low
Reynolds number flows can be scaled by the Kolmogorov mi-
cro scale (n) and r.m.s. of velocity fluctuation (trms), and
the most expected diameter and maximum azimuthal veloc-
ity are about 87 and 0.5~1.0 %rms, respectively. Recent

study in homogeneous isotropic turbulence up to Re) sz 220
have revealed the exact scaling of these coherent fine scale
eddies (Miyauchi et al., 2002). The diameter and the maxi-
mum azimuthal velocity are scaled by n and the Kolmogorov
velocity (ug), respectively. Similar to the results obtained
in low Rey cases (Jimenez et al., 1993; Tanahashi et al.,
1999a), the most expected diameter is 89 even for highest
Rey. On the other hand, the most expected value of the
maximum azimuthal velocity can be scaled by u;, instead of
Urms and is 1.2uy for all Rey. It should be noted that the
azimuthal velocity of intense fine scale eddies of which diam-
eter is about 87 remains to be scaled by u,.ms and reaches
to 3 ~ 4 urms even at high Rey.

From previous studies for homogeneous isotropic turbu-
lence and turbulent mixing layer, it has been reported that
the most expected eigen value ratio is -5:1:4, and the eigen
vectors of the minimum eigen value tends to be perpendic-
ular to the rotating axis of the coherent fine scale eddy and
the angle between the rotating axis and the eigen vector of
intermediate eigen value is less than 45 degrees for about
70 percents of the fine scale eddy (Tanahashi et al., 2001;
Miyauchi et al., 2002). Blackburn et al. (1996) have re-
ported that the eigen vector of the intermediate eigen value
shows a tendency to be parallel with vorticiy vector in the
near-wall of turbulent channel flow with Rer,=395. Tana-
hashi et al. (1999c) have investigated the alignment and the
ratio of the eigen values at the center of coherent fine scale
eddy for low Reynolds number cases.

Over the past few decades, a number of studies have been
conducted on relation between a low-speed streaks and the
structure of wall turbulence. The average length of a low-
speed streak associated with a hairpin vortex is about two
to three hundred wall units in low-Reynolds number channel
flow (Kim, 1983). The most widely observed coherent struc-
tures in the wall layer are streaks: elongated regions of high-
and low-speed fluid alternating in the spanwise direction
(Choi et al., 1994). The generation of the quasi-streamwise
vortices is associated with changes in the shape of a low-
speed streak surface (Soldati, 2000). However, there are
few studies about quantitative relations between low-speed
streaks and coherent fine scale eddies. For identification of
vortical structures in turbulent flow, a considerable number
of investigations have been reported. For example, Tanaka
et al. (1993) have used V?p to represent streamwise vortices
in homogenous shear flows. V2p corresponds to two times of
second invariant @ of velocity gradient tensor. Jeong et al.
(1997) and Blackborn et al. (1996) have used Az definition
and A definition to investigate vortical structure near the
wall. However, all of these identification methods depend
on the threshold of the variable.

In this study, direct numerical simulations of turbulent



Table 1: Numerical parameters for DNS of turbulent channel
flows.
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Figure 1: Mean velocity profiles for Re-=180, 400 and 800.

Figure 2: Root-mean-square velocity fluctuations for
Re,=180, 400 and 800.
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Figure 3: The budget of the transport equation for the tur-
bulent energy (Re-=800).

channel flow up to Re,=800 are conducted. From these
DNS data, the scaling law of fine scale eddies near the wall
is investigated, and large and small scale coherent structures
of wall turbulence are visualized by showing spatial distri-
butions of the axes of coherent fine scale eddies.

TURBULENT STATISTICS

In this study, direct numerical simulations of turbulent
channel flows up to Re,=800 were conducted by solving
incompressible Navier-Stokes equations and continuity equa-
tion. The parameters of direct numerical simulation for tur-
bulent channel flows are given in Table 1. Spectral methods
are used in the streamwise (x) and spanwise (z) directions,
and 4th-order central finite difference scheme is used in the
transverse (y) direction. This DNS code has been verified
by comparing with the result of Kim et al. (1987). Com-
putations were carried out until turbulent flow field attains
statistical steady state.

Figure 1 shows the mean velocity profiles for Re,=180,
400 and 800, where the wall-normal coordinate is given in
wall units and the mean velocity is normalized by the friction
velocity (u,). The solid and dashed lines represent the lin-
ear and the log laws, respectively. The all curves in yt <5

Figure 4: Iso-surfaces of the second invariant of the velocity
gradient tensor for Re,=800 (@=10, domain size: I x lj X
1+ = 5026 x 800 x 2513). (a) top view, (b) side view.

are independent on Re,. The curves in yt > 20 both for
Re,=400 and 800 coincide with the dashed line, but the
curve of Re,=180 shifts upward from it. Moreover, it should
be noted that the wake region is clearly distinguishable for
Re,=800. Root-mean-square velocity fluctuations normal-
ized by u, are shown in Fig. 2. These peak values slightly
increase with the increase of Re,. Especially, wall-normal
and spanwise components highly depend on Re, and posi-
tions of the peak values are slightly away from the wall as
Re- is increased.

Figure 3 shows the budget of the turbulent kinetic energy
for Re,=800 in wall coordinates. The absolute values of the
production and the dissipation terms are larger than the
results for Re- =180 and 400, but the ratio of these terms is
independent on Re. as shown by Moser et al. (1999). We
could verify that the budget of the transport equation for
the Reynolds stress also shows the similar trend with the
budget of the turbulent kinetic energy and these residuals
are almost zero.

FINE SCALE EDDIES OF HIGH REYNOLDS NUMBER
TURBULENT CHANNEL FLOW

There are a lot of methods for identification of vortical
structures in turbulent flows. High vorticity or enstrophy
regions are the simplest method to visualize the vortical
structures. In previous works related to fine scale struc-
tures in homogeneous isotropic turbulence, high vorticity
regions have been used to identify the intermittent fine scale
structure of turbulence (Jimenez et al., 1993; She et al.,
1990). However, high vorticity regions may represent tube-
like and sheet-like structures simultaneously. For the case
with a strong mean shear like the flows near wall or cen-
ter of free shear flows, employment of high vorticity or
enstrophy regions fails to represent coherent eddies. For
visualization purpose, iso-surfaces of the second invariant
of the velocity gradient tensor are shown for Re-=800 in
Fig. 4. The region visualized is the lower half of calcula-
tion domain. ‘The second invariant of the velocity gradient
tensor is given by Q(= (W;;W;; — 8:;S5:;)/2), where S (=
(Bui/azj +8u]~/6zi)/2) and W;; (: (aui/aa)j —auj/ami)/2)
are the symmetric and asymmetric parts of the velocity gra-
dient tensor A;;(= 8u;/dx; = Si;+Wi;). Figure 4 indicates
that there are a lot of tube-like structures in turbulent chan-
nel flow same as in homogeneous isotropic turbulence and
turbulent mixing layer. In turbulent channel flow, stream-
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Figure 5: Probability density functions of diameter (a) and
azimuthal velocity (b) of the coherent fine scale eddies for
Re-=800.
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Figure 6: The inclination angle (a) and the tilting angle (b)
of the coherent fine scale eddies (Re, =800).

wise vortices near the wall and hairpin-like vortices can be
visualized by the positive @ region. Jeong et al. (1997)
and Blackborn et al. (1996) have used Ay definition and
A definition to investigate vortical structure near the wall.
However, all of the visualization including Fig. 4 depend on
the threshold of the variable. Therefore, in this study, fine
scale eddies are educed without any threshold by using new
identification scheme based on local flow pattern which was
used in our previous studies on homogeneous isotropic tur-
bulence (Tanahashi et al.,, 1999a). From the distribution
of @, two-dimensional sections of fine scale eddies are iden-
tified by using the new identification scheme. The educed
section includes a local maximum of @ along the axis of
a fine scale eddy and a center point of swirling motion is
identified. Figure 5 shows the probability density functions
(pdf) of the diameter and the maximum azimuthal velocity
of the fine scale eddies for Re,=800. The diameter and the
maximum azimuthal velocity are normalized by 1 and uy,
which are calculated from mean energy dissipation rate at
yT where the eddy exists. The both pdfs do not depend
on Re; (the results for low Re, cases are not shown here),
whereas they have weak yT-dependence. Near the wall, the
most expected diameter and maximum azimuthal velocity
are about 107 and 2.0uj, respectively. Leaving from the
wall, the most expected diameter and maximum azimuthal
velocity become about 8n and 1.2uj, which coincides with
those in homogeneous isotropic turbulence (Miyauchi et al.,
2002). The fine scale eddies near the wall such as the stream-
wise vortices and hairpin-like vortices are slightly wider and
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Figure 7: Probability density functions of eigen values of

the strain tensor for Re,=800. (a) whole flow field (every
20 y1), (b) at the center of coherent fine scale eddies.

stronger than those in homogeneous isatropic turbulence.

In addition to the diameter and the maximum azimuthal
velocity, the spatial distribution of the axes also shows char-
acteristic feature near the wall. Figure 6 shows the incli-
nation angles and the tilting angles of the coherent fine
scale eddies for Re,=800. The inclination angle and the
tilting angle are defined by the similar method of Jeong et
al. (1997). These two angles show strong directional depen-
dence with the decrease of y+. These features correspond to
hairpin-like eddies and streamwise vortices observed near the
wall (Tanahashi et al., 1999b, 1999c). Figure 6 suggests that
directional dependence of the axis can be observed even for
yt ~ 600. The variance of the diameters becomes relatively
small near the wall as shown in Fig. 5(a), and diameter of al-
most all coherent fine scale eddies near the wall is about 107.
Therefore, the anisotropy near the wall can be attributed
to the smallest coherent fine scale eddies. These results
suggest that the anisotropic feature in near-wall turbulence
is significantly different from that in free-shear turbulence
(Tanahashi et al., 2001) from the viewpoint of the fine scale
structure.

COHERENT FINE SCALE EDDY AND STRAIN FIELD

Strain rate acting on the coherent fine scale eddies is
investigated by evaluating the strain rate tensor S;; at the
center of the coherent fine scale eddies. The definitions of
eigen values and eigen vectors of S;; are given by

S=R

o o R

0 0
g 0 |RT,R= (ea,eﬁ,e.,), (1)
0 v

where «, 8 and « are the minimum, intermediate and max-
imum eigen values respectively. The unit eigen vectors cor-
responding to a, 3 and 7y are represented by e, eg and e,.
Due to the assumption of incompressibility, these can be ex-
pressed by the relational equation of a+8+7 =0{a <0<
v, & < B3). 8, ¥ and ¢ are defined by the angles between the
rotating axes of coherent fine scale eddies (vorticity vector
w at the center of coherent fine scale eddies) and three unit
eigen vectors eq, eg and ey.

Figure 7 (a) shows pdfs of the eigen values at the whole
flow field. The eigen values are normalized by n and wuy.
Near the wall, the pdf of intermediate eigen value indicates



101

LB i e
et

<y <+ 160<y+*<240]

—8— 402y*<80 —-—240<}¥:<320

> 80<y*<120 —o— 320<y+<400

s 120<y*<160—=— 400<y+<560;

s " 560<y*<8003

- 100

TTTYm T T

101 |§

](}Z-I...I....l....l...nl.. &
0.0 0.5 1.0 1.5 20 25 30
g

Figure 8: Probability density functions of eigen value ratio
at the center of coherent fine scale eddies (Re-=800).
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Figure 9: Probability density functions of the angles be-
tween unit eigen vectors of strain rate tensor and vorticity
vectors for Re,=800. (a) whole flow field, (b) at the center
of coherent fine scale eddies.

a sharp peak at about zero, but it skews into the positive por-
tion and the most expected value becomes about 0.06ug /7
far from the wall. The most expected minimum eigen value
increases with the increase of distance from the wall, while
the most expected maximum eigen value decreases. Figure
7(b) shows pdfs of the eigen values evaluated at centers of
the coherent fine scale eddies. The eigen values in Fig. 7(b)
are also normalized by wuy /7 as in Fig. 7(a). Pdfs of the eigen
values near the wall are different from those at the channel
center. Near the wall, pdfs of @, # and v show peaks at
about -0.32, 0.04 and 0.27 uy /7, respectively. At the center
of channel, these peak values are -0.25, 0.04 and 0.02 uy /7
respectively, which coincides with the cases of homogeneous
isotropic turbulence and turbulent mixing layer. Pdfs of the
eigen values of strain rate acting on the center of coherent
fine scale eddies show a very good agreement with those
obtained from the whole flow field except for the near-wall
region, but the absolute values of the most expected eigen
values are smaller than those obtained from the whole flow

field. In other words, these results suggest that strain rate

acting on the center of coherent fine scale eddies is smaller
than that in the mean shear field.

To investigate the ratio of eigen values at centers of the
coherent fine scale eddies, an eigen value ratio ¢ is intro-
duced by ¢ = (v — 8)/(v+ 8) (0 <o < 3). Figure 8 shows
the pdf of the eigen value ratio for Re.= 800. The peak of
pdf increases from about 0.6 to 0.7 near the wall. The most
expected eigen value ratio corresponding to ¢ = 0.6 is a:: 5y
=-5:1:4 from the incompressible constraint. This eigen value
ratio coincides with that in homogeneous isotropic turbu-
lence and turbulent mixing layer (Tanahashi et al., 2001).
Since the eigen value ratio shows a peak at ¢ = 0.7 near

X

Figure 10: Spatial distributions of central axes of the coher-
ent fine scale eddies for Re, =800 (domain size: {7 xl;” xl}f =
2513 x 800 x 2513). (a) top view, (b) side view.

the wall, the most expected eigen value ratio becomes a:83:v
= -7:1:6. Note that the large compression and stretching
are acting on the coherent fine scale eddies in the near-wall
region. Figure 9(a) shows pdfs of the angles between the
local vorticity vectors and the unit eigen vectors of strain
rate in the whole flow field. Near the wall, probabilities of
8, ¢ and ¢ show peaks at § = 90, ¢y = 0 and ¢ = 90, re-
spectively. Far from the wall, pdfs of 4 show peak at about
25 degree, but those of 8 and ¢ still do peak at about 90
degrees. Pdfs of the angles between the unit eigen vectors
and the axes of coherent fine scale eddies are plotted in Fig.
9(b). Pdfs of # and ¢ show similar trends with those in Fig.
9(a) except for the region near the wall, but probabilities
near the peaks at about 90 degrees are higher than those
in the whole flow field. The probability of peak for ¥ in
the near-wall region is lower than that in the channel cen-
ter. In the near-wall region, pdf of 4 sharply increases from
zero and gradually decreases after showing peaks at about
15~17 degrees. These results reveal that the rotating axes
of the coherent fine scale eddies are perpendicular to the
eigen vectors of the minimum and maximum eigen values,
and the eddies receive the strong compression and stretch-
ing in that direction. The most of coherent fine scale eddies
receive a weak stretching corresponding to the intermediate
eigen value with the misalignment of about 15~17 degrees
with respect to the axial direction of the fine scale eddies.
These features do not depend on Reynolds number.

SPATIAL DISTRIBUTIONS OF CENTRAL AXES OF THE
COHERENT FINE SCALE EDDIES

To investigate spatial distribution of the coherent fine
scale eddies, the central axes of the fine scale eddies were
identified by using axis tracing method (Tanahashi et al.,
1999d). Figure 10 shows spatial distributions of central axes
of the coherent fine scale eddies for Re,=800. The visual-
ization in Fig. 10 includes all vortical structures because the



Figure 11: Spatial distributions of central axes of the co-
herent fine scale eddies with contour of the instantaneous
streamwise velocity fluctuation at y+=20 for Re, =800 (do-
main size: I x I x 17 = 2513 x 800 x 2513). Diameter of
axis was drawn to be proportional with VQ*. (a) top view,
(b) perspective view from the upstream.

axis, which specify the positions in space, is independent to
the threshold of variables. Spatial distributions of the axes
in Fig. 10 show that the coherent fine eddies exist not only in
the near-wall region but also in the whole flow field. More-
over, it is worth noting that central axes of the coherent fine
scale eddies are distributed in viscous sub-layer for all three
Re- cases, and axis positions nearest to the wall are about
yT=0.6, 0.8 and 0.9 for Rer»=180, 400 and 800, respectively.

Figure 11 shows spatial distributions of the axes of the
coherent fine scale eddies with contour of the instantaneous
streamwise velocity at y*= 20 for Re,=800. In contour of
the streamwise velocity, light-gray and dark-gray indicate
high- and low-speed regions, respectively. Diameter of a
central axis was drawn to be proportional with +/Q* on the
axes and @Q* is normalized by % and uy. Therefore, wider
axes possess stronger rotation rate. It is observed that the
large clusters of central axes of the coherent fine scale eddies
appear with a spanwise spacing of about 1100~1200 wall
units. To deeply inspect relation between the axes of the
coherent fine scale eddies and high- and low-speed regions
in Fig. 11, detailed spatial distributions are shown in Fig.
12 as a function of y*. In Fig. 12(a), it is clearly observed
that central axes in low-speed streaks possess the relatively
stronger rotation rate near the wall. The distributions with
the weaker rotation rate are not so related with low-speed
streaks. Above tendencies are hardly dependent on the wall-
normal direction, but the lateral spacing between low-speed
regions becomes wider leaving from the wall as shown in Fig.
12(b). These results suggest that low-speed streaks possess
relatively larger second invariant of the velocity gradient ten-
sor, which is closely related with fine scale eddies possessing
the stronger rotation rate.

(a) (b)

Figure 12: The y* dependence of the axis distribution of
the coherent fine scale eddies (Re, = 800, top view, domain
size: IF x IF = 2513 % 2513). (a) I} =39 ~ 60, u'+ contour
at yT =40, (b) I} =199 ~ 400, u'+ contour at y*+ = 200.
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Figure 13: The probability density function of the instanta-
neous streamwise velocity on the central axes of the coherent
fine scale eddies (Re-=800).

Figure 14: Spatial distributions of central axes of the co-
herent fine scale eddies for Re.=800. Diameter of axis
was drawn to be proportional with /Q% (domain size:
IF x IF x1f = 2513 x 800 x 328). (a) perspective view
from above and upstream, (b) side view.

To estimate relation between the streak structure and the
rotation rate of the coherent fine scale eddies quantitatively,
conditioned pdfs of the instantaneous streamwise velocity on
the central axes of the coherent fine scale eddies is plotted
in Fig. 13. The triangle and the rectangle symbols indicate
pdfs conditioned by Q* > 1.05 and Q* < 1.05, respectively.
For comparison, pdf of «'* without the condition is plotted.
Here, the Q* is the average value of Q* at central axes of
the coherent fine scale eddies, and Q* is normalized by 5
and ug. The pdf of /T for Q* > 1.05 indicates that the
probability in the low-speed regions is higher than that in
the high-speed regions. The percentages of axis in the low-



speed regions are 53.5% for all axes, 66.0% for @* > 1.05
and 48.7% for Q* < 1.05. '

To investigate structures of the fine scale eddies in de-
tails, spatial distributions of central axes in a typical do-
main are magnified in Fig. 14. The visualized region is
T =0~2513, y+=0~800 and z+= 785 ~ 1113, and the vi-
sualization method are the same in Fig. 11. It is clearly
observed that hairpin-like eddies and their packets (Adrian
et al., 2000) exist in labeled zones I, II and III. Moreover,
the two large clusters involving the pockets of hairpin-like
vortices are extended like mountains in the streamwise di-
rection (see IT and III regions). The hairpin-like vortices are
one kinds of the coherent fine scale eddies, and their clusters
or packets make further larger clusters of eddies.

CONCLUSIONS

In the present study, DNS of turbulent channel flow was
carried out up to Re,= 800 to investigate scaling law of
fine scale eddies and their spatial distribution. To educe
fine scale eddies without any threshold, a new identification
scheme based on local flow pattern was employed. The de-
tected coherent fine scale eddies in turbulent channel flow
can be scaled by the Kolomogorov microscale and the Kolo-
mogorov velocity. In the near-wall region, the most expected
diameter and maximum azimuthal velocity are about 10
times of the Kolomogorov microscale and 2.0 times of the
Kolomogorov velocity, but become about 8 times of the
Kolomogorov microscale and 1.2 times of the Kolomogorov
velocity leaving from the wall. These results do not depend
on Reynolds number. Spatial distributions of the rotating
axes of fine scale eddies show characteristic feature near the
wall. The directional dependence of the axis is observed even
for y+ & 600. Strain rate acting on the coherent fine scale
eddies can be scaled by the Kolomogorov microscale and the
Kolomogorov velocity. The most expected eigen value ratio
is o:By = -7:1:6 near the wall, but it becomes a:fry = -
5:1:4 leaving from the wall. It is indicated that the large
compression and stretching are acing on the rotating plane
of the coherent fine scale eddies near the wall. The eigen
vector of the minimum eigen value has a tendency to be
perpendicular to the axis of the coherent fine scale eddy and
the most expected angles between the axis and eigen vector
of the intermediate eigen value are about 15~17 degrees.

Central axes of the coherent fine scale eddies are dis-
tributed even in the viscous sub-layer. They form the large
clusters with a spanwise spacing of about 1100~1200 wall
units far from the wall (y7 =~ 400). Relation between the
instantaneous streamwise velocity and central axes shows
that the stronger coherent fine scale eddies tend to exist in
low-speed regions. Spatial distributions of central axes also
show that hairpin-like vortices are one feature of the coher-
ent fine scale eddies. In addition, the packets of hairpin-like
vortices can form further larger clusters of eddies.
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