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ABSTRACT

A new inhomogencous correction of elliptic relaxation
equation(ERE) in Reynolds Averaged Navier Stokes(RANS)
modelling is proposed to intermediate between near wall and
far from the wall. The quasi-homogeneous pressure strain
models using in second moment turbulence closures are
usually applied to the source term of ERE. This elliptic model
approach is to avoid use of the wall distances and wall normal
vectors, so that it makes the model applicable to the flows
bounded with complex geometries. The boundary conditions
of elliptic relaxation operator affect to the quasi-homogeneous
pressure strain model in the near wall region. That is, it
gives the correct damping of the redistribution at the wall,
and then enables the reproduction of the two-component limit
of turbulence. However, the original relaxation operator
(Durbin 1993) induces the amplification of redistribution in
the logarithmic layer. Accordingly, it is necessary to modify
the elliptic operator to reproduce the acceptable results in
the logarithmic region. In order to modify the elliptic operator,
a strong inhomogeneous correction for the source term of
ERE is proposed in the present study.

The present inhomogeneous correction for the elliptic
relaxation equation is applied to the inertial and non-inertial
channel flows. Results are compared with DNS data for the
channel flows. The present model shows good agreements
for non-rotating and rotating channel flows.

INTRODUCT i ON

In contrast to the conventional second moment modelling
for the pressure strain correlation, Durbin(1993) introduced
a novel approach. He proposed to model directly the two-point
correlation in the integral equation of pressure strain term,
which use an isotropic exponential function model. That is,
a convolution production is obtained from this model, which
can be inverted to give the so-called "elliptic relaxation
approach”. Thus, the pressure strain term is no longer given
by an algebraic relation, but rather by a differential equation.
The non-local character is preserved through the elliptic
operator and the model can be integrated down to the wall.
A notable feature of this approach is that the source term
of the elliptic relaxation equation can be given by any
quasi-homogeneous model. Even though some intuitive
assumptions have been made, Durbin's model is based on
a theoretical approach, leading to the hope that it is somewhat

universal, unlike the other models using the wall damping
function, wall normal vector and the distance from a wall.

Despite the remarkable success, room for improving the
elliptic relaxation model exists. In particular, as pointed out
by Wizman et al.(1996), the elliptic operator does not behave
correctly in the logarithmic layer. This result shows that the
elliptic operator leads to an amplification of the redistribution.
Note that the cause of amplification in the logarithmic region
does not relate to the quasi-homogeneous model for the source
term of the ERE.

Based on the above considerations, Laurance & Durbin
(1994) and Wizman et al.(1996) proposed new elliptic
formulations using the gradient of turbulent length scale. And
Manceau et al.(2001) introduced a new correlation function
between the fluctuating velocity and the Laplacian of the
pressure gradients. These achievements are obtained by taking
into account the influence of strong inhomogeneity and
anisotropy on the redistribution term, using a spatially variable
length scale and an asymmetric model of the correlation
function. The modified elliptic relaxation equations as
compared with Durbin's original model for channel flows
represent the improved results for the reduction of
amplification in the logarithmic layer. However, because the
improvements are not satisfactory, especially, in the channel
center region, the problems for the amplification of
redistribution are still remains.

The present study aims at proposing a new elliptic relaxation
equation considering inhomogeneous situations. In this
modelling process, we decompose the source term of elliptic
relaxation equation into homogeneous and inhomogeneous
parts. The present model is applied to the inertial and
non-inertial channel flows and the results are compared with
DNS data to test the ability of model.

MODELL {NG STRONG INHOMOGENEITY EFFECTS
ON PRESSURE STRAIN
Governing Equation

The problem under consideration is that of incompressible
and fully developed turbulent channel flow rotating with
constant angular velocity about the spanwise direction. The
momentum equation and the Reynolds stress equation coupled
with pressure strain and dissipation can be written in Cartesian
tensor notation as:
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are the production due to mean shear( P;) and system rotation
(R;), viscous diffusion( D7), turbulent diffusion( D}) and

pressure diffusion( Df), pressure strain( @), dissipation( &;)

and relaxed redistribution tensor( ;). The generation terms
need no modeling and enter the Reynolds stress equation
in their exact form. The viscous diffusion term can also be
retained in its exact form whereas the unclosed turbulent
diffusion and pressure diffusion are modelled together by
gradient diffusions.

The redistribution tensor F; is obtained from the solution
of elliptic relaxation equation proposed by Durbin(1993),
which can be put into coordinate independent form and written

as:
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where, d’f‘,- denotes a quasi-homogeneous form of @ %
is the turbulent kinetic energy and b is the Reynolds stress
anisotropy tensor defined as b;= wu;/2k— 8,4/3. Also,
Length scale [, is prevented from going to zero at the wall
by using the Kolmogorov scale and time scale T also
introduces the Kolmogorov scale in the viscous layer. L
and 7T are defined as:
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The model equations for Reynolds stress  u; are finally
closed with the transport equation for dissipation rate ¢ of
turbulent kinetic energy.
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where C,=1.35(1+0.1P/e), C4=1.83, 0.=1.4 and

C,=0.26, and p is the production rate of turbulent kinetic
energy.

Concerning the derivation of the above relations, see
Durbin(1993) for further details.

Inhomogeneity Correction by Length Scale
Anisotropy

The major feature of elliptic relaxation approach is the
damping effect of the pressure strain correlation at the near
wall region. However, the problem of elliptic relaxation
equation (3) as emphasized by Wizman et al.(1996) and
Manceau et al.(2001) is that the redistribution is amplified
in the logarithmic region.

In order to avoid this problem, Laurence & Durbin(1994)
and Wizman et. al(1996) proposed the empirical length scale
gradient models, respectively, transformed as
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On the other hand, Manceau et al.(2001) showed that the
behaviour of amplification is a consequence of the fact that
the anisotropy of the correlation function f(x,x”) which is
defined to obtain the integral solution of the Poisson equation
and, in particular, its asymmetry in the wall normal direction
due to the strong inhomogeneity in the vicinity of the wall,
is not accounted for by the simple model as
fx, %) =exp(— r/L) introduced by Durbin(1993). Thus,
they proposed to use the gradient of the length scale to identify
the main direction of inhomogeneity, in the following manner:

fx, ) = ex0 (TR VL) an

where, »=|x—x’| and L is the correlation length scale.

Considering Eq. (11) and using a Taylor series expansion,
the Manceau et al(2001) suggested a new neutral formulations
with g=1/12 as follows.
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To investigate the quantity of amplification, the present
work introduced an elliptic effect I'; raised from the elliptic
operator instead of the amplification factor I originated by
Manceau et al.(2001). That is, the "elliptic effect” is induced
by the elliptic operator v ? and defined as,

A
Ii=p (13)

where F is the source term of the elliptic relaxation equation

in homogeneity situation. f; is solved by elliptic relaxation
equation (3) and is affected by boundary condition. The ratio
of kf;to F* means the deviation of redistribution calculated
by elliptic operator from the quasi-homogencous redistribution
model.

In order to test the "elliptic effect”, an a priori test is
performed with the DNS data for a channel flow at Re_ =590.
The a priori test consists in solving the Durbin's elliptic
relaxation equation(1993) with the terms F% and [ taken
from the DNS data. The exact boundary condition is also
applied at the wall. The equation is solved in only one-half
of the channel using a symmetry boundary condition at the
center of the channel.
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Fig. 1 The comparison of elliptic effect for the wall normal
direction I"5, with three source terms based on Durbin's elliptic
relaxation equation(1993).

For the source term F7, any quasi-homogeneous model
can be used. Here, for linear model, we adopt the simple
model recommended by Launder et al.(1975), which consists
of a sum of Rotta's return to isotropy and the isotropization
of production model (hereafter, IP+Rotta). Also, for
quasi-linear model and non-linear model, we adopt Speziale,
Sarkar & Gatski(1991, hereafter SSG) model and modified
Launder & Teselepidakis (1991, hereafter NLCM; non-linear
cubic model) model, respectively.

According to the above mentioned source term models,
the elliptic effect for wall normal direction I'y is depicted
in Fig. 1. From the a priori test, although the discrepancies
are existed in the adopted all models, we can see the similar
trends in the whole region. The amplified distributions of
I’y are shown in the logarithmic region and in the channel
center region. The amplification is gradually decreasing in
the logarithmic region and rapidly increasing in the channel
center. Also, I brings about damping effect in viscous
sublayer and buffer layer region inner y*x5(). The same
characteristics as profiles for I'y are obtained from the I'j;

and I'y; components. Since this amplification effect is caused
by the elliptic operator, as mentioned the above, the modified
elliptic operators are suggested by Laurence & Durbin(1994),
Wizman et al.(1996) and Manceau et al.(2001).

Strong Inhomogeneous Correction by Quasi-
Homogeneous Pressure Strain Gradient

In the source terms modelling process of Durbin's ERE
and the other ERE, generally, the homogeneous situation
is assumed. Thus, we think that it is sufficient to adopt the
quasi-homogeneous models for the source term of ERE.
However, in case of considering the inhomogeneous situation,
it is natural to introduce an inhomogeneous pressure strain
mode! in the source term of ERE.

According to Manceau et al.(2001), the elliptic relaxation
equation in the primitive form is written as,
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In homogeneous situation, the second term of the LHS

on Eq. (14), L2V 2@, vanishes and the RHS of Eq. (14)

can be replaced by any quasi-homogeneous model @Z
However, through imposing boundary conditions on Eq. (14),
non-homogeneous effects induced by the presence of a wall
can be represented. In order to consider the strong
inhomogeneity situation in the near wall region, we introduce
an inhomogeneous redistribution model in the source term.
For the inhomogeneous situation, @; and ¥; on Eq. (14)
can be decomposed into homogeneous and inhomogeneous
parts as follows.

O =0+ o w,=yhy gt (16)
The substitution of Eq. (16) into Eq. (14) yields the
following source term equations.
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First of all, in homogeneous part Eq. (17), it is assumed

that the second term of the RUS, L%v zd)?j , vanishes and
the first term of the RHS can be replaced by any
quasi-homogeneous model. However, in inhomogeneous part
Eq. (18), it is necessary to model the first and second term

of the RHS respectively. In the second term L%v Q%%

v 2@ is modelled by using a parameter f, as follows.
The parameter connects the far from the wall situation and
near wall effect.
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In Eq. (19), in order to model the term [ v 20%%]
a special approximation is introduced by subtracting L*v?®;,
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The first term of parenthesis of the RHS on Eq. (20) is the

Wizman et al.'s elliptic operator(1996) and the second term

is Durbin's original one(1993). Thus, the difference of the

two operators is assumed to model [ v 2@ in this

study.

On the other hand, the term [ v 20%*] /v way @PPeared from

the second term of the RHS on Egq. (19) can be reconstructed

by composition of homogeneous and in-homogeneous parts,

and then considering [ v 2% ~( in the far from the

1 fur wall

wall, the term arrives at following station.
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Inserting Eqgs. (19)~(21) into Eq. (18) and then substituting

of Eq. (17) and (18) into Eg. (14), ultimately, a new formulation
for elliptic relaxation operator can be derived as

Q,;,—(1—f)v i ;= 0"+ o™ (22)
where, f,=A and A is Lumley's stress flatness invariant.

. . inh
In order to model inhomogeneous pressure strain @ 7",



we adopted the wall-echo correction proposed by Launder
& Li(1994). Thus, the effective homogeneous pressure-strain
gradient is defined as
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where, £A)=A"3%1+2.543%) suggested by Launder and
Li(1994) and the coefficient (™ is calibrated from the
calculations for channel flow as 0.08.

To test the prediction ability for the amplification by the
present formulation Eq. (22), we perform the a priori test
for the "elliptic effect" with the channel flow DNS data at
Re, =590 and the result is compared with the other
formulations proposed by Durbin's original model Eq. (3),
Wizman's empirical model Eq. (10) and Manceau et al's
neutral model Eq. (12).

Fig. 2 shows the distributions of damping effect in the
near wall and the amplification effect in logarithmic region.
These results are obtained by using IP+Rotta and SSG
pressure-strain models as the source term. In order to compare
the "elliptic effect" of elliptic operators, the length scale

coefficient C; appeared in Eq. (6) is fixed to 0.2. However,
the model of Manceau et al.(2001) is computed by both 0.2
and 0.28. Wizman et al's ERE and Manceau et al.'s ERE
which are known to the neutral models show the very similar
trends with the small amplification quantity relatively in the
logarithmic region as compared with Durbin's original model.
The present formulation, also, gives good profiles for the
reduction of amplification in the logarithmic layer and,
especially, shows the superior results to those of Wizman
et al's ERE and Manceau et al's ERE in the core region.
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Fig 2. The effects of elliptic relaxation operator on Iy for

(a) Rotta+IP model (b) SSG model.
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Fig. 3 Distributions of I'y due to various turbulent length
scale coefficients with SSG model.

That is, the amplification effect can be reduced by modification
of the original Durbin's model, which is achieved by additional
term obtaining from the asymmetry correlation such as
Wizman et al. and Manceau et al.'s ERE or by introducing
the inhomogeneous effect in the source term as the present
model. In case of adopting C;=0.28 in Manceau et al.'s
ERE, so enlarged damping effects are reproduced in near
wall region.

On the other hand, when compared with the source term
models of ERE, the elliptic effect for wall normal direction
I’y is generally amplified by more SSG than IP+Rotta.

The effect of length scale coefficient C; on Eq. (13) is
examined for Wizman et al's ERE and the present ERE with
SSG model as shown in Fig. 3. Three coefficients are adopted
in C;=0.2, 0.25 and 0.3. It can be seen that the increasing
of length scale coefficient leads to over-damping effect in
the near wall region and to over-amplifying in the core region.

RESULTS AND DISCUSSION

In this section, simulations are performed with Reynolds
stress equation involving the elliptic relaxation equation, in
both cases of non-rotating and rotating channel flows as shown
in Fig. 4.

First of all, in order to investigate the elliptic effects in
the non-rotating channel flow, as can be seen in Fig. 5, the
mean velocity and Reynolds stress profiles are compared
with DNS data( Re = 194, Kristoffersen & Andersson 1993)
for four elliptic relaxation equations (Durbin's original model
1993; Wizman et al. 1996; Manceau et al. 2001 and the
present model Eq. (22)). For all models, the coefficients
appeared in the model equations are adopted on the same
values except elliptic operator only.

suction side
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N
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pressure side

Fig. 4 Schematic diagram of flow configuration and coordinate
system.



The coefficient of the length scale is, in particular, fixed
to 0.2, because the elliptic effect is strongly influenced by
the length scale coefficient. And, the SSG model is used
as the source term of the elliptic relaxation equations.

The profiles of the mean velocity show very similar results
for all models in the logarithmic region, but a discrepancy
is existed in the core region by Durbin's model. In Fig. 5(b)
and (c), the distributions of streamwise and wall normal
turbulence intensity are predicted well by the present model
than any other models, especially, in the core region. This
distinct behaviors in the core region by the present model
are related to the distributions of the "elliptic effect”" in the
same region. That is, it is already mentioned, through the
a priori test, that the present model gives the weaker
amplification effect than other models in the core region.
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Fig. 5 A comparison of (a) normalized mean velocity profiles;
(b) streamwise and (c) wall-normal intensity profiles with

Re.= 194 DNS(symbols, Kristoffersen & Andersson, 1993).
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Fig. 6 A comparison of (a) streamwiste intensity, (b)
wall-normal intensity profiles with Re,=590 DNS data
(symbols, Moser et al. 1999).

Also, it can be observed in Fig. 6 that the present model,

for the test case of Re.=530(Moser et al. 1999), gives overall
correct normal stress profiles in the whole region. This result
shows that the prediction sensitives due to the variation of
Reynolds number can be appreciably reflected by the present
model. Generally, in non-rotating channel flow calculation,
Wizman et al.(1996) and Manceau et al.(2001) models show
good results in comparison with the DNS data. As will be
seen later, however, elliptic operator of Wizman et al. and
Manceau et al. offers the unstable solution on the imposed
system rotation.

In the simulations for rotating channel flow using elliptic
relaxation model, Wizman et al's model with SSG and
Pettersson & Andersson(1997) model with non-linear pressure
strain proposed by Ristorcelli et al.(1995) were successfully
applied to the rotating flow. However, in order to reproduce
the inclination of relaminarization in the suction side, an

additional rotating source term( C gke ;2 ,U, ) in the
dissipation equation is adopted by both models.

On the examination for the dissipation rate of isotropic
turbulence, Speziale et al.(1991) demonstrated that the
additional term in dissipation equation is not only theoretically
unfounded but also is limited at local rotation number.
Therefore, it is noted that, in the present calculations, the
additional source term in the dissipation equation is not used.
Since the additional term is purely empirical, we think that
the use of the term can induce the unphysical phenomena
on the industrial applications. In case of excluding the



additional rotating source term in the dissipation equation,
the above both models have failed to reproduce the DNS
data at high rotation rate due to a numerical instability. Thus,
the prediction for rotating channel flows is limited to the
present model. And, the rotational effect is induced only
from the production due to rotation and the absolute vorticity
of the pressure-strain term in the full Reynolds stress equation.

Fig. 7 shows the associated mean velocity distributions
across the channel with increasing rotation number( Ro=0.1.
0.2 and 0.5). The position of maximum mean velocity is
shifted towards the suction side of the channel and the profiles
become approximately linear with a slope gU/dy of 20 and
the width of linear slope region increases with the rotation
number. The model predictions are compared well with DNS
data. Fig. 8 represents the profiles of Reynolds stresses. The
streamwise intensity ;* significantly reduced close to the
suction side with increasing rotation.

20.04

Fig. 7 Streamwise mean velocity profiles for the present model
with increasing rotating rates; DNS data (Kristoffersen &
Andersson, 1993)-symbols; present model-lines.

Fig. 8 Reynolds stresses profiles for the present model with
increasing rotating rates: DNS, symbols; present model, lines.

The wall normal intensity »* increases gradually in between
pressure side and the channel center as shown in Fig. 8(b).
In turbulent shear stress zp*, the positions of zero shear
stress are shifted towards the suction side with increasing
rotation. The distributions of mean velocity and intensity
components except 4+ are in excellent agreement in
comparison with DNS data. On the other hand, the spanwise
intensity is slightly under-estimated with increasing rotation.
Overall, the present predictions by the imposed system rotation
show good agreement with DNS data at higher rotation number
than low rotation number.

CONCLUSION

A new inhomogeneous correction of elliptic relaxation
equation in RANS modelling is proposed to intermediate
between near wall and far from the wall. Especially, in
considering the inhomogeneous situation, the source term
of ERE is modeled by decomposing into homogeneous and
inhomogeneous parts. From this modelling process, we can
more reduce the amplification of redistribution by the present
model than the other models.

In the non-rotating channel flow, the profiles of the mean
velocity show very similar results for all models in the
logarithmic region. The normal turbulence intensity
distributions are predicted well by the present model than
any other models, especially, in the core region. This distinct
behaviors in the core region by the present model are related
to the distributions of the "elliptic effect” in the same region.

The other models except the presents model have failed
to reproduce the DNS data at high rotation rate due to a
numerical instability. Thus, the prediction for rotating channel
flows is limited to the present model. The present predictions
by the imposed system rotation show good agreement with
DNS data in the wide range of the rotating number.
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