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ABSTRACT

Algebraic relations that link the scalar-flux components
to mean scalar gradient were investigated in several com-
plex turbulent flows with impingement and separation. To
illustrate the characteristics of the models, three flow config-
urations were selected, i.e., a fully-developed plane channel
flow, a plane impinging jet and a separated flow around an
obstacle in a plane channel, for all of which LES data were
available for comparison as wall as for a priori test.

Previous studies have pointed out that higher turbulent
Prandtl number or similar effect needs to be incorporated
into the models for reasonable scalar-transfer predictions
in the regions around stagnation and reattachment points.
Such treatments commonly have the capability of reducing
an excessive turbulent length scale for the scalar-field pre-
diction.

The present investigations, however, indicate that model
constants at the same level as in the channel-flow case may
be used for predicting scalar fluxes even in complex turbu-
lence with impingement and separation.

INTRODUCTION

Reynolds-averaged turbulence models continue to con-
stitute the principal approach for representing the effects
of turbulence in prediction procedures for engineering flows.
One issue that has been the subject of much attention is
the wall-limiting behavior returned by low-Reynolds-number
forms that are designed to be applicable across the viscous
sublayer, down to the wall. This is of particular concern
in relation to scalar transfer at walls, where the turbulence
property of the near-wall layer plays a critical role.

On the other hand, recently, algebraic turbulent scalar-
flux models have also developed for application to complex
turbulent scalar-transfer fields. Among them, Abe and Suga
(2001a, 2001b) reported some important knowledge for con-
structing a high-performance algebraic scalar-flux model by
investigating LES data under several strain conditions, lead-
ing to a proposal of a new model expression (Suga and Abe,
2000). Although this (SA) model gave successful predic-
tions for both components of scalar fluxes (i.e., ut and vt) in
several fundamental test cases including shear-free surfaces,
further detailed discussion is still needed especially on its
application to more complex flow fields.

The present paper is a contribution to the ongoing search
for better algebraic turbulence and turbulent scalar-flux
models for complex flow fields. In this study, we revis-
ited and reevaluated some basic tensorial formulations for
representing scalar fluxes algebraically. Investigations were
performed by both a priori tests using LES data and actual

calculations with a recently-developed algebraic velocity-
field model. The characteristics of the model expressions
are illustrated by application of the models to several test
cases with impingement and separation.

TURBULENT SCALAR-FLUX MODELS

The generalized gradient-diffusion hypothesis (GGDH)
model is expressed as follows (Daly and Harlow, 1970):

Ei—t =—=Cu7e UiUj T,j (1)

where T, u;t and u;u; are the mean scalar, the turbulent
scalar-flux vector and the Reynolds-stress tensor, respec-
tively. In Eq. (1), Ci1 and 7¢ are a model coefficient and a
characteristic time scale, respectively. Although the GGDH
model has been most often adopted in many engineering ap-
plications, one crucial problem is that it gives an extreme
underprediction of the streamwise scalar flux (uf) even in
simple wall-shear flows (see for example, Launder, 1976).

Considering the fact that the scalar fluctuation (t) in the
wall-shear region correlates more strongly with the stream-
wise velocity fluctuation (u) than with the wall-normal one
(v) (Kim and Moin, 1989), Abe and Suga (2001a) suggested
that the introduction of the following expression into a model
was effective to improve the predictive performance:
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where k = (u;u;/2) is the turbulence energy. This is re-
garded as a higher-order extension of the GGDH model by
using the quadratic products of the Reynolds-stress tensor
(quadratic model).

Taking account of these discussions, Abe and Suga
(2001a) proposed a combined expression of the GGDH and
the quadratic forms as
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and then the SA model was calibrated (Suga and Abe, 2000).
After that, Abe and Suga (2001b) confirmed that the discus-
sion on the scalar-flux vector angle was basically applicable
to flow fields with impingement and separation. However,
the models by Eqgs. (1) (GGDH) and (2) (quadratic) have not .
been compared yet in such complex flows and thus detailed
discussion is still needed. Hence, to reveal their characteris-
tics in more detail, we investigated the above two expressions
by applying them independently to some test cases including
flow impingement and separation.
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Figure 2: Obstacle flow (Re = Uy H/v = 3350).

As is seen in the SA model, most low-Reynolds-number
scalar-flux models include highly-functionalized model co-
efficients to reproduce complex scalar-transfer phenomena
very close to the wall surface. However, such model coeffi-
cients are likely to make discussion point ambiguous at the
stage of fundamental investigation. Thus a simple expres-
sion for the time scale 7+ with a constant coefficient was
adopted in this study.

As for Cy1 and Cia, we set constant values as Cy; = 0.22
and Ciz = 0.45, respectively. They were commonly used
for all the test cases to follow. Concerning the time scale,
the following expression was adopted as the first attempt

(Durbin, 1993):
k
= max(%,6,/%) (4)
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where £ is the dissipation rate of k. Note that to repro-
duce strictly correct near-wall limiting behavior of scalar
fluxes, both C¢; 7t and Cya27¢ need to be proportional to y—!
when the wall approaches. In this sense, the time scale by
Eq. (4) doesn’t always ensure the correct near-wall behav-
ior, although the present results are enough to discuss on
fundamental characteristics of the models.

TEST CASES AND COMPUTATIONAL CONDITIONS

To illustrate the characteristics of the models, three test
cases were selected, i.e., a fully-developed plane channel flow,
a plane impinging jet and a separated flow around an obsta-
cle in a plane channel (obstacle flow), for all of which LES
data (Abe and Suga, 2001a, 2001b) were available for a pri-
ori tests and also for comparison with the results presently
obtained. As for the channel-flow case, the Reynolds num-
ber based on the channel width (2H) and the mean veloc-
ity (Um) was 5600. In the plane-impinging-jet case, the
Reynolds number based on the nozzie width (D) and the
center velocity at the nozzle exit (Ug) was 6000. Concerning
the obstacle-flow case, the Reynolds number based on the

Outlet condition

LES Model

» uut, whwwt o

Figure 3: Comparison of Reynolds normal stresses in channel
flow (Re = 2Un H/v = 5600).

obstacle height (H) and the mean velocity on the obstacle
(Ug) was 3350. In this study, the Prandtl number (P,) was
set to 0.71 for all the cases. The schematic views of the
plane-impinging-jet and obstacle-flow cases are illustrated
in Figs. 1 and 2, respectively. The present computational
conditions are summarized in Table 1.

All the calculations were performed with the finite-
volume procedure STREAM of Lien and Leschziner (1994},
followed by several improvements and substantially up-
graded by Apsley and Leschziner (2000). In this study, a
priori tests were performed for all the cases by using the
LES data for velocity fields. Furthermore, to investigate
their applicability in more detail, calculations with an alge-
braic velocity-field model were conducted for the first two
cases. In calculating flow fields, we adopted a recently-
developed model by Abe et al. (2003) (AJL model), which
was based on the previously-proposed model by Abe et al.
(1997) followed by some effective modifications for predict-
ing Reynolds-stress anisotropy more correctly. Summary of
the AJL model is presented in Appendix A.

RESULTS AND DISCUSSION

Plane Channel Flow

Figure 3 compares the Reynolds normal stresses pre-
dicted by the AJL model with those of the LES data (Abe
and Suga, 2001a), where uu, 7o and ww are, respectively,
the streamwise, the wall-normal and the spanwise compo-
nents of the Reynolds-stress tensor. The obtained results
are in good agreement with the LES data, including the
wall-limiting behavior of the wall-normal component.

Predictive performance of the scalar fluxes by the GGDH
and the quadratic models are compared in Fig. 4, where a
priori test was performed for the scalar field with the aid of
the LES data for the velocity field. Note that the dissipation
rate was obtained from the residual of the turbulence-energy
budget. On the other hand, Fig. 5 illustrates the results
in case that the AJL model was used for the velocity-field
calculation. As for the channel-flow case, both results in
Figs. 4 and 5 show a similar trend that the quadratic model
provides reasonable prediction for both uf and vt, while the
GGDH model fails to do it. In this case, the above results
seem natural because the AJL model provides reasonable
predictions not only for the mean velocity but also for the



Table 1: Computational conditions.

Domain Grid

Pr B. C.

Channel flow 2H 54
Plane impinging jet 20D x 10D 115 x 87

Re =5600 0.71 no-slip wall, Tjower =0, Tupper = 1
Re = 6000 0.71
Re=3350 0.71 no-slip wall, Tj,per =0, Tupper =1

no-slip wall, T;, =0, Ty = 1

Obstacle flow 31H x 2H 243 x 71
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Figure 4: Comparison of turbulent scalar fluxes by using
LES data for velocity field (a priori tests, P, = 0.71).
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Figure 5: Comparison of turbulent scalar fluxes by using
AJL model for velocity-field calculation (P, = 0.71).

stress anisotropy in the near-wall region. This fact also coin-
cides well with the knowledge obtained from Abe and Suga
(2001a).

Plane Impinging Jet

Figures 6 — 9 show representative results for the plane-
impinging-jet case. Figure 6 compares the Reynolds normal
stresses in the wall-jet region (z/D = 4) with the LES data
{Abe and Suga, 2001b). It is seen that generally good agree-
ment is obtained. In particular, the wall-normal component
(77) is predicted very well in the near-wall region. The pre-

dicted scalar-fluxes in the near-wall region were compared in
Fig. 7. The results from both a priori tests and calculations
with the AJL model show that the quadratic model returns
much more reasonable ut than the GGDH model does. As
for the GGDH model, the level of C; seems reasonable to
predict vf, while ut can never be predicted precisely with
the same model constant.

The predicted Reynolds normal stresses in the stagna-
tion region were shown in Fig. 8. Although the prediction
accuracy of the AJL model is not adequate especially for the
separation between T% and Ww, the wall-normal turbulence
(vv) is predicted well even in the stagnation region. This
is important to predict v¢ by the GGDH model. Figure 9
compares the predicted scalar fluxes with the LES data. As
for the results of a priori test, vt is a little overestimated by
the GGDH model and considerably underestimated by the
quadratic model. On the other hand, the results with the
AJL model indicate that the GGDH model returns good
agreement with the LES data, although a little underpre-
diction is seen. The quadratic model returns considerable
underestimation of v. Interesting is that even in the stagna-
tion region, Ct; at a similar level to that in the channel-flow
case may be applicable to the prediction of scalar fluxes,
while the quadratic model may have some difficulty for ap-
plications of this kind.

Obstacle Fiow

Figure 10 illustrates the Reynolds normal stresses ob-
tained from the LES data (Abe and Suga, 2001b). In the
figure, the location at =/H = 7 is just around the reattach-
ment point, while z/H = —6 is actually in the redeveloping
region between obstacles due to the periodic condition in the
z-direction. From Fig. 10 (a), it is seen that stress anisotropy
shows a similar trend to that in the channel-flow case. On
the other hand, Fig. 10 (b) shows a considerable different
aspect in the region close to the lower wall, where the sep-
aration between wu and ww becomes very small, while in
the upper-wall region, @ is still much larger than ww. The
turbulent state in the lower-wall region is characterized by
that encountered in axisymmetric contraction.

The scalar-fluxes obtained from a priori test were com-
pared in Fig. 11. From Fig. 11 (a), the results show a similar
trend to that in the channel-flow case. The quadratic model
successfully predicts the streamwise scalar flux as well as
the wall-normal one, while the GGDH model fails to do it.
Also is shown from Fig. 11 (b) that in the upper-wall re-
gion at z/H = 7, the quadratic model generally provides
good prediction of the scalar-flux vector, though a little un-
derprediction is seen. This fact reasonably coincides with
the characteristics of the Reynolds-stress anisotropy shown
in Fig. 10 (b). On the contrary, it is understood from
Fig. 11 (b) that in the region very close to the lower-wall, i.e.,
y/H < 0.1, the streamwise scalar flux by the LES is situated
between those predicted by the GGDH and the quadratic
models, while the quadratic model works well a little away
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Figure 6: Comparison of Reynolds normal stresses in wall-jet

region of plane impinging jet.
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Figure 7: Comparison of turbulent scalar fluxes in wall-jet
region of plane impinging jet (P, = 0.71).

from the wall surface, i.e., y/H > 0.1. Also is shown that
both models successfully predict the wall-normal scalar flux
with the same model constant as in the channel-flow case
even in the region around the reattachment point.

Among algebraic scalar-flux models previously proposed,
the SA model (Suga and Abe, 2000) is one of representa-
tives to take account of the above characteristics in complex

scalar-transfer fields. The SA model has a combined for-

mulation of the GGDH and the quadratic forms based on
Eq. (3). In this model, the model constants were calibrated
as C¢1 ~ 0.06 and Cia ~ 0.4 with highly-functionalized low-
Reynolds-number model functions. Such small value of Cy1
gives a strong influence to reduce scalar fluxes in regions
where the GGDH part plays a dominant role. On the other
hand, it has been pointed out from previous studies that
higher turbulent Prandtl number or similar effect needs to
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Figure 8: Comparison of Reynolds normal stresses in stag-
nation region of plane impinging jet.
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Figure 9: Comparison of turbulent scalar fluxes in stagna-
tion region of plane impinging jet (P, = 0.71).

be incorporated into eddy-viscosity-type models for reason-
able scalar-transfer predictions in the reattachment region
(Abe et al., 1995). This treatment also has the capability of
reducing an excessive turbulent length scale for the scalar-
field prediction.

Considering the facts obtained from the present results,
however, it is indicated that model constants at the same
level as in the channel-flow case may be used for predicting
scalar fluxes even in complex turbulence with impingement
and separation. For example, as for the SA model, the level
of Ci2 (~ 0.4) is confirmed to be reasonable in the wall-
shear region, including a wall-jet region of plane impinging
jet and a redeveloping region of obstacle flow. Concerning
Ct1, however, its value (~ 0.06) may be too small to pre-
dict scalar-transfer coefficient correctly if the GGDH part is

modeled to be indeed dominant especially in the stagnation
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Figure 10: Reynolds normal stresses in obstacle flow (LES
data).
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Figure 11: Comparison of turbulent scalar fluxes in obstacle
flow (P = 0.71, a priori test).

region of a plane impinging jet. To discuss on this topic in
more detail, further investigation of the performance of the
SA model is thought to be useful.

CONCLUDING REMARKS

To reveal unknown characteristics of algebraic turbulent
scalar-flux models, detailed investigations of some represen-
tative model expressions for scalar fluxes were performed in
several complex turbulent flows with impingement and sep-
aration. The main conclusions derived from the study are
as follows:

e As regards the angle of scalar-flux vector, it has been
confirmed again that the modeling concept proposed by
Abe and Suga (2001a, 2001b) is basically applicable to

complex flow fields with impingement and separation.

e In this sense, a combined model of the GGDH and the
quadratic forms proposed by Suga and Abe (2000), i.e.,
the SA model, is thought to be a reasonable approach to
predict such complex scalar-transfer fields.

e In this study, however, the results indicate that the
GGDH part of the SA model (i.e., C¢; ~ 0.06) may be
too small to predict scalar-transfer coefficient correctly in
stagnation and reattachment regions if the GGDH part
indeed plays a dominant role there.

e To construct a higher-performance algebraic scalar-flux
model, further discussion on the constants and functions
bridging the GGDH and the quadratic forms is needed.
As a good example, detailed investigation of the perfor-
mance of the SA model is expected to be useful for further
development.
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APPENDIX A. SUMMARY OF TURBULENCE MODEL
The following is the summary of the AJL model (Abe et
al., 2003) used in the present study, which is categorized in
the two-equation nonlinear eddy-viscosity model. In what
follows, use is made of the anisotropy tensor b;;, the strain-
rate tensor S;; and the vorticity tensor €2;;:
u; i Ui+ U

i =/ — 0, Sij =
! 3 g 2

, Qij =
2k ’

(5)
These are normalized with a model constant and a turbulent
time scale as

sz = Cp bij, S;j = Cp7Sij, Q;j = Cp1Qy; (6)
where

1243 k2
T = e vy = C’,f#?, Cp=08, C,=012 (7)
To represent the damping effects of viscosity, use is made of

Abe et al’s (1997) damping function:

35 R s
flt: 1+R—§exp{—(£) } {1‘—fw(26)} (8)

fu (6) = exp {— ("?)2} ®)

In Egs. (8) and (9), R:(= k?/ve) is the turbulent Reynolds
number, n*(= (ve)!/*n/v) is the non-dimensional wall dis-
tance with Kolmogorov scale (Abe et al., 1994) and £ is a
prescribed constant. The Reynolds stresses may be evalu-
ated from Eqgs. (5) and (6) as follows:

where

T 2 _2 of
Usu; = §k5ij + 2k b,‘j = gkéij + 2k Cn (10)

The general form of the constitutive equation for the
anisotropy tensor b7; is:

b =105 + {1~ fu (26)} {83 +°03; } + b}, (1)



The basic constitutive relations for 1b* and 2b* are those
proposed by Abe et al. (1997).

by = —-CpS};,

* * * * * * * 61:. *
2bij =Cp {—2 (Sikaj - Qikskj) +2 (sikskj - ?JS 2)}

(12)
In Eq. (12), the coefficient Cp is as follows:

1
1+ _2?20*2 +_23_ (0*2 _5*2) fs

Cp = (13)

where

fB=14C, (Q* - S*), $*2 =8 S5, @2=qr O

mn’

S*=14/5*2, Q*=v*?, C,=100 (14)

In addition to the above, the following two fragments are
introduced. The first fragment is incorporated for strong
straining field:

8% * 5 r 61. :
by; = —CBfa15}; +2CB fs2 (Sikskj - ?JS 2) (15)

where
fsl =‘fr1fr2csl (9*2 - 5*2) ’
fs2 = _frlfr2 {1 + Cs2 (Q* - S*)} B
92 _52 52 2
frl - m) f'r2 - m) S = Smnsmny

0% = QnnQma, Cs1 = 0.15C,, C,2 =0.07C, (16)
The second fragment is introduced to improve the pre-
dictive performance in the near-wall region:

“b}; = Cp fuw(26) “bi; (17

where
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In Eq. (18),

* %
Sij = TdSij, Q:; = TdQ,’j,
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1
ay =1, fuw= 7 Yw = 1.5, Cy =0.5,
N; olg
di =V Ni = 5y
VNN ox;
where n is the nearest wall distance and the time scale 74 is
modeled as follows:

ld =n (19)

= (- f (B} S 42009 /2 (20)

Turbulence energy is determined from the usual form of
the transport equation:

Dk _ 8 (V+ ut) Bk __aU; 01
Dt ~ Ox; oy /) Ox; itly ox; ¢ (21)

where 12
o = -7.—, ft =145.0fu (5) (22)
t
The dissipation-rate equation is that proposed by Abe et
al. (1997) with minor modifications:

De ¢/ v\ Oe £ ____aU;
De _ 0 ny%xl_c, -c
Dt ~ ox; {("+ 05) ij} YR oy ezfe

(23)
where
R
fe= [1 ~0.3exp {— (6 ‘) }] {1-fu(33)} .,
1.5
C.1 =145, Cep =183, oe= T (24)
t
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