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ABSTRACT

The use of a pressure strain rate model including terms
nonlinear in the strain and rotation rate tensors in an explicit
algebraic Reynolds stress model (EARSM) is considered.
For 2D mean flows the nonlinear contributions can be fully
accounted for in the EARSM formulation. This is not the
case for 3D mean flows and a suggestion of how to modify
the nonlinear terms to make the EARSM formulations for
2D and 3D mean flows consistent is given. The correspond-
ing EARSM is derived. This is all done in conjunction with
the use of streamline curvature corrections emanating from
the advection of the Reynolds stress anisotropy. The pro-
posed model is tested for rotating homogeneous shear flow,
rotating channel flow and rotating pipe flow. The nonlinear
contributions are shown to have a significant effect on the
flow characteristics. Finally, model predictions are investi-
gated using a K —w platform with a change in the dissipation
rate production, P.. It is found that even for a small change
of Pe the effect is considerable and it is argued that some
of the shortcomings of the model can be attributed to the
modelling of P¢ (or corresponding P,,).

INTRODUCTION

Effects of strong curvature and rotation represent cor-
nerstone problems in turbulence modelling. An exploration
of what can be done in terms of realizability and predic-
tion improvements of rotating flows using a Differential
Reynolds stress model (DRSM) was undertaken by Sjégren
and Johansson (2000). In the Sjégren and Johansson DRSM
(8J-DRSM) a pressure strain rate model nonlinear in the
Reynolds stress anisotropy, aij = Uiy /K — 26;;/3, was
used. Also, tensor groups quadratic in the mean strain and
rotation rate tensors were included and were found to im-
prove predictions in rotating flows. Here, the effect of such
a nonlinear pressure strain rate model on an EARSM is in-
vestigated.

An EARSM can be derived from the transport equation
for the Reynolds stress anisotropy
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in which the dissipation rate tensor €;; and the pres-
sure strain rate tensor I1;; need to be modelled while the
Reynolds stress production P;; and the turbulence kinetic
energy production P can be expressed explicitly in aij, K
and the mean strain and rotation rate tensors. When nor-
malized with the turbulence time scale (1 = K/¢) the latter
read
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Assuming weak equilibrium, Rodi (1976), which amounts to
neglecting the advection and diffusion yields a purely alge-
braic relation
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in boldface matrix notation. The normalized Reynolds stress
production can be expressed as
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The pressure strain rate and dissipation rate anisotropy
(€ij = €i5/e — 26:5/3) tensors can be lumped together and
modelled, with the nonlinear contributions in addition to
general quasilinear model, as
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in which P/e = —{aS}, where {} denotes the trace, and the
nonlinear terms are
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N and NS were used by Sjdgren and Johansson (2000) and
were shown to improve the prediction of effects of rotation.
By using the same model coefficient, Cq, for both N? and
N their total contribution vanishes in flows where Ilg =
—IIg, e.g. channel flow and homogeneous shear flow.



The modelled transport equation of the Reynolds stress
anisotropy can now be written

T (BD% - 'D(a)) = Ag ((Aa + A4§)a+ A8 —
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The relations between the A and C-coefficients are
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After assuming weak equilibrium and hence neglecting
the advection and diffusion (8) can, in analogy with (3), be
written as an algebraic relation
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where N = A3 +A4§.

NONLINEAR MODELLING IN CONJUNCTION WITH
STREAMLINE CURVATURE CORRECTIONS

By imposing the weak equilibrium assumption in the
streamline based coordinate system instead of the compu-
tational system, the advection gives rise to an additional al-
gebraic term, see Girimaji (1997), Sjogren (1997) and Wallin
and Johansson (2002). This contribution can be formulated
in terms of an antisymmetric tensor Q(") as
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From (8) it is clear that for an EARSM using a linear pres-
sure strain rate model (¢ = 0) the streamline curvature
correction (11) can be fully accounted for by replacing the
rotation rate tensor Q with
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Problems arise when ¢ # 0 since the tensor N€ which is
nonlinear in the absolute rotation rate tensor must be taken
into account while still keeping the two and three dimen-
sional formulations consistent. For 2D mean flows this can
be overcome and a mathematically correct formulation can
be reached. For 3D mean flows, on the other hand, the non-
linearity of N® would demand the use of a tensor basis based
on three tensors S, 2 and Q(7), This is an awkward solution
to the problem and a more tractable procedure is needed.
By reformulating N© as

No = Y=la (an*2 + Q% g{an”}I) (13)
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(10) is fully solvable, in terms of N, for 2D and 3D mean

flows when using the appropriate approximation of NS for

3D mean flows (see below). Furthermore, the EARSM so-

lution for 2D mean flows will be the same as the exact

curvature corrected solution and the 3D EARSM formula-
tion will in a consistent way reduce to the 2D formulation in
case of 2D mean flows. Also, when the curvature correction
is switched off (2’-'5 — 0), (13) reduces to its original form,

(6)-

EARSM FORMULATION

To reach an EARSM formulation, (10) is solved by ex-
panding the Reynolds stress anisotropy in terms of a tensor
basis derived from the mean velocity gradients by using the
Caley-Hamilton theorem. The algebraically least complex
way to do this is in terms of a ten element tensor basis, TG,
The ten basis tensors can, in fact, be reduced to five tensors,
but the resulting coefficients will be extremely lengthy, see
Taulbee et al. (1994). Thus, the Reynolds stress anisotropy
is most conviniently expanded as
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(14) is then inserted into (10) and solved for the §-
coefficients which can depend on the invariants of S and
Q*

IIs = {Sz} IHqx = {9*2} IIig = {53}
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The scalar left hand side nonlinearity of (10) in the un-
knowns (S-coefficients) is adressed by solving a polynomial
equation for N after the S-coefficients have been determined.

It has been shown, see e.g. Taulbee (1992), that for
Ay = 0 and ¢ = 0, (10) maps to five basis tensors for 3D
mean flows:
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This is convenient since the mode! based on a full ten tensor
basis is much more complex, and the behaviour in terms of
singularities is presently not known.

Since we are interested in the curvature corrected model
formulation, €* rather than Q will be used in the basis
tensors (16) and the invariants (15).

EARSM solution for 2D mean flows

For 2D mean flows with A = 0 and ¢ # 0, the EARSM
solution maps to T and T® and the corresponding S-
coefficients are

B = - Ba= et (7)

N* is given by the solution of the third order equation
N*3 = ASN*? — (A1 Ay 4 2[Iq« )N* + 2A31I0« =0 (18)
which is the same equation as for the WJ-EARSM but with

N = N* = N — ¢(I5s — vV=1Iq) and A3 = A} = Az —
¢(vIg — +=1Ig). Note that it is the inertial IIg that is



used for the A3 relation. The physical solution of (18) is
given by
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It is worth pointing out that the transformation Az — A}
is the only difference between the proposed model and the
WI-EARSM for 2D mean flows.

EARSM solution for 3D mean flows

For 3D mean flows the nonlinear tensor N° can be shown
to map outside the five tensor basis (16). In order to elim-
inate this problem N¥ can be approximated with its exact
expression in 2D mean flows, N5 = /TI5a.

With A2 = 0, N¥ = \/TTga and using the nonlinear con-
tribution N in (13) the corresponding EARSM coefficients
become
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The equation for N for 3D mean flows is a very lengthy sixth
order equation that will not be given here. This equation is
of little practical use. Here we instead us the cubic equation
(18) for both 2D and 3D mean flows.

The inclusion of G = a2Q — Qa?

We also made an attempt of including a term nonlinear
in the Reynolds stress anisotropy tensor G = a2 — Qa? in
the pressure strain rate model (5). G is one of terms in the
most general model linear in S and € (see e.g. Johansson
and Hallbidck, 1994).

For 2D mean flows the inclusion of G in the pressure
strain rate model will not change the EARSM solution if

Az = 0. This can be explained by the fact that for the
particular choice of A2 = 0, the contribution of G vanishes
for 2D mean flows.

For 3D mean flows G can be shown to map outside of the
five tensor basis (16). There is no direct way of approximat-
ing G in such a way that the contribution outside (16) is zero
while its characteristics of being nonlinear in the Reynolds
stress anisotropy are preserved. In fact, if the S-coefficients
are chosen such that the contribution outside (16) is zero,
then the trivial (zero) solution will be the only solution.

Recalibration of Ag .

In the basic curvature corrected model by Wallin and
Johansson (2002), the Ag coefficient was calibrated consider-
ing homogeneous rotating shear. By arguing that the model
should be neutrally stable for rotation number Ro = 1/2,
where Ro = w{"/(dU/dy), the value Ag = —0.72 was ob-
tained (see Wallin & Johansson (2002) for details). Since we
are adding additional terms, N and N%, that contribute
in rotating flows, the value of Ag needs to be recalibrated in
order to preserve neutral stability for Ro = 1/2.

For the present model, an analytical relation for the
model coefficients cannot be derived, as was done by Wallin
& Johansson for the basic model without the nonlinear
terms. Instead, the Ag coefficient was adjusted such that
the computed turbulent kinetic energy initially will be al-
most constant for Ro = 1/2. That resulted in 49 = —~0.9
which is used in the following.

The inclusion of the N5 terms reduces A} for Ro be-
tween 0 and 1. Under certain conditions, A3 may become
negative, e.g. when Rg &~ 0.5 and the turbulence is decay-
ing. This must be avoided, since the solution of the cubic
N* equation may change character for negative A} and non-
physical roots may be obtained. This is avoided by a lower
limit of A} = max (As — ¢(v/I[g — v—1Ia),0) which should
not have a major impact on the solution.

TEST CASES

The proposed model has been tested for three generic
flows: rotating homogeneous shear flow and rotating channel
flow for 2D mean flows and rotating pipe flow for 3D mean
flows. Comparisons have been made with LES by Bardina
et al. (1983) for rotating homogenous shear flow, DNS by
Alvelius (1999) for channel flow and experimental data by
Imao et al. (1996) for rotating pipe flow.

The curvature correction was used in all computations
implying the appropriate use of Q*, as defined in (12).
The model parameters were Ag = —0.9 and Cq = 0.5 as
proposed by Sjégren and Johansson (2000), which yields
¢ = —Cq/Ap = 0.56. Furthermore A; = 1.20, Az = 0,
Az = 1.80 and A4 = 2.25, see Wallin and Johansson (2002).

2D mean flow: Homogeneous rotating shear flow
Homogenous rotating shear was computed for three dif-
ferent rotation numbers Ro = wgr)/(dU/dy) of 1/4,1/2 and
—1/2 using the K — ¢ platform together with the proposed
model, the WJ-EARSM and an eddy viscosity model.
Figure 1a shows the development of the turbulent ki-
netic energy for the most energetic case, Ro = 1/4. As can
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Figure 1: Rotating homogeneous shear flow, dU/dy = 3.4,
proposed model (—-), WIJ-EARSM (—), eddy-visc (---),
Large eddy simulation (LES) by Bardina et al. (1983) (o)

be seen the inclusion of the nonlinear terms increases the
growth rate. K is, however, still somewhat underpredicted
compared to the long time behaviour of the Bardina LES .

The stable case with Ro = —1/2 is shown in figure
1b. Predictions of both the WJ-EARSM and the proposed
model agree well with the Bardina LES data, the propsed
model does, however, show a small improvement over the
WIJ-EARSM.

The neutrally stable case of Ro = 1/2 is shown in figure
lc. As expected, the change in the turbulent kinetic energy
is small and the agreement with the Bardina LES good.

2D mean flows: Fully developed rotating channel flow

The second 2D mean flow test case is rotating channel
flow. The channel coordinate system {ez,ey,e.} is rotating
with the rate wzr) in the e, direction. The Reynolds number
for the computation was Rer = urd/v = 180 where § is the
half channel width and u2 = 1/2((u$)? + (u%)?) where u$
and u} are the stable and unstable side friction velocities,
respectively. Comparisons were made with the DNS data by
Alvelius and the WJ-EARSM. The K — w platform was used
for both models and the computations were made such that
ur assumed the same value as in the DNS data with Ro =
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Figure 2: Computed rotating channel flow for Rer = 180.
Proposed EARSM (—-),WJ-EARSM (—), DNS data by
Alvelius (o).

2w§r)6/Um = 0.43. As a result, Ro differs depending on the
model used, Ro = 0.41 for the proposed model and Ro =
0.40 for the WI-EARSM. The Reynolds numbers based on
the mean velocity are (Rem = Umd/v) are Reld®™ = 3201
and ReanJ) = 3265 for the propsed model and the WJ-
EARSM, respectively.

The predictions of Ut with the proposed model are
somewhat improved, but still overestimated, figure 2a. The
predictions of W+ are almost unaffected, figure 2b. Both
models lack the ability to capture the small amount of pos-
itive shear stress on the stable side of the wvt profile.

3D mean flows: Rotating pipe flow

Fully developed flow in a circular pipe rotating around
its symmetry axis is a suitable test case since it represents
a three dimensional flow that is dependent on only one spa-
tial coordinate, r. For a laminar rotating flow the tangential
velocity, Uy, varies linearly with the radius, r, while in case
of turbulence Uy has a parabola-like profile, which is indi-
cated by the form of the integrated Reynolds equation in the
tangential direction

T r 2 Ka
Us(r) = Us (R) %, - ;/ St ar (24)
r

An eddy-viscosity model is unable to describe this phe-
nomenon and a fully three-dimensional EARSM is needed,
i.e. quadratic EARSMs are not sufficient.

The proposed model has been used to compute rotating
pipe flow at Reynolds number 20000, based on the axial bulk
velocity and the pipe diameter. Two different rotation rates
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Figure 3: Computed rotating pipe flow for Z = 0 and 0.5,
Proposed EARSM for Z = 0.5(——) and Z = 0 (-), Wi-
EARSM for Z = 0.5 (---) and Z = 0 (—-) (coincides with
proposed model for Z = 0), Experimental data by Imao et
al. for Z =0 (x) and Z = 0.5 (o).

were used, Z = 0 and 0.5 where Z = Uy(R)/Uy,, the wall
tangential velocity divided by the axial bulk velocity. The
results are compared with experimental data by Imao et al.
(1996). Comparisons are also made with the WI-EARSM.
The K — w model was used as model platform. The model
behaviour at larger rates of rotation (e.g. Z = 1) is presently
investigated.

Figure 3a shows the computed axial velocities compared
with experimental data. For Z = 0 both models predict a U,
that is somewhat too flat in the centre of the pipe compared
to the experimental data. For Z = 0.5 the proposed model
performs very well compared to the WJ-EARSM and the

agreement with experimental data is excellent.

The tangential velocity profiles are shown in figure 3b.
The proposed model clearly shows an improvement over the
WJ-EARSM and the predicted Uy agrees very well with the
experiment.

The computed turbulence kinetic energy, on the other
hand, is not in good agreement with the experiment for ei-
ther model. Here, instead of decreasing with increasing Z,
as in the experiments, K increases drastically, see figure 3c.

The importance of P,

The difficulties of consistently predicting the character-
istics of a rotating flow is a well known problem for both
the Reynolds stress modelling and the underlying two equa-
tion platform, see Speziale et al. (1998). FEspecially, the
modelling of the dissipation rate production is critical.

As a demonstration of this, one could study rotating pipe
flow using a dissipation rate model which is a blend of the
eddy viscosity assumption and an EARSM. Such a model
could read P. = CE1E/K(2CO,I/THS/72—|—(1—Ca)PK) where
Ca is the parameter that determines the relative weight of
the eddy viscosity assumption. Since the prodution of w is

given by P, = —CEEE — %Pk, P becomes
73

II
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where o = C¢; — 1 and Pk denotes the turbulent kinetic
energy production.

By using (25) in the K — w platform the characteristics
of the flow are radically changed even for a small value of
Co. Figure 4 displays the results for C, = 0.1 and C, = 0.
As can be seen, the profiles are almost unaffected for Z = 0.
For Z = 0.5 the relative changes of the axial and tangential
velocity profiles are small compared to the change in turbu-
lence kinetic energy, K, which is reduced considerably and
is comparable to the level in the experiment. By increasing
Ca further the turbulence level is reduced even more without
affecting the velocity profiles significantly.

It is not the intention here to investigate the advantages
and disadvantages of (25) as a model. The purpose is merely
to demonstrate that the modelling of P,, is important and
that the delicate nature of the problem implies that a small
change in the model can have a significant effect on the flow
characteristics. It is, on the other hand, promising to see
that a change in a quantity not appearing explicitly in the
EARSM formulation has a positive effect on the overall pre-
dictions made with the complete model.

CONCLUDING REMARKS

The contribution of the nonlinear extensions (NS of
the quasilinear pressure strain rate model can be included
in the EARSM formulation and a consistent solution can
be reached. The nonlinear contributions have a significant
effect on the model predictions. It is also evident that the
modelling of the production of the length scale determining
quantity is critical and that further development in this area
is needed.
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Figure 4: Rotating pipe flow for Z = 0 and Z = 0.5. Pro-
posed model with C, = 0.1 for Z = 0.5 (—) and Z = 0
(-++) and with Cy =0 for Z = 0.5 (—=) and Z = 0 (—).
Experimental data by Imao et al. for Z =0 (x) and Z = 0.5
(0)-
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