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ABSTRACT

A numerical method is developed for solving the un-
steady Reynolds-averaged Navier-Stokes (URANS) and tur-
bulence closure equations in complex, multi-connected, 3D
geometries. The governing equations are solved with a
second-order-accurate finite-volume, dual-time-stepping ar-
tificial compressibility approach. Arbitrarily complex ge-
ometries are handled using domain decomposition with over-
set (Chimera) grids. The method is applied to simulate
turbulent flows in two three-dimensional configurations in-
spired by the geometry of real-life bridge foundations in
natural rivers: a channel with four bottom-mounted rectan-
gular piers and a channel with a corner-mounted rectangular
block. Comparisons between the computed results and lab-
oratory measurements and flow visualization experiments
lead to the conclusion that even relatively simple turbulence
closure models (such as the standard k-= model with wall
functions or the one-equation Spalart-Allmaras model) can
simulate flows with large-scale coherent structures with rea-
sonable accuracy.

INTRODUCTION

Statistical turbulence models that directly resolve large-
scale, organized, unsteady structures in the flow, such as un-
steady RANS (URANS) or hybrid URANS/LES approaches,
constitute the only feasible modeling framework for quanti-
tatively accurate predictions of complex engineering flows
at real-life Reynolds numbers (Spalart, 2000). Such strate-
gies have already been applied with promising results in
many complex engineering flow simulations. Hedges et al.
(2002) used the detached-eddy simulation approach to study
the flow around a generic airliner landing-gear truck. Yao
et al. (2002) simulated turbulent trailing edge flows using a
URANS approach.

The successful implementation and evaluation of un-
steady, statistical turbulence modeling approaches in real-
life engineering applications relies largely on the develop-
ment of numerical methods capable of resolving arbitrarily
complex geometrical configurations with high spatial and
temporal resolution. In this paper we seek to: (1) develop
an accurate numerical method for carrying out URANS com-
putations in arbitrarily complex geometries; (2) illustrate
the promise of the method in complex, 3D flows domi-

nated by large-scale vortex shedding; and (3) assess the
predictive capabilities of relatively simple isotropic turbulent
models, including the standard k-¢ model and the Spalart-
Allmaras model (Spalart and Allmaras, 1994), in the context
of URANS modeling.

We employed the domain-decomposition approach with
structured, overset (Chimera) grids for discretizing com-
plex, multi-connected geometries. The history of domain-
decomposition can be tracked back to the pioneering, 19th
century work by Schwartz (1869) who proposed an iterative
method, known as Schwartz alternating procedure, to solve
boundary value problems. The more recent implementation
of this method in CFD was proposed by Steger et al. (1983).
This method divides a complex domain into a number of sim-
pler blocks or sub-domains. The sub-domains are allowed to
arbitrarily overlap with each other and are discretized us-
ing structured, curvilinear grids. Such a grid arrangement
is desirable because it exhibits much of the versatility of un-
structured grids when handling complex geometries while re-
taining a number of desirable features of structured meshes.
Grid components can be added or altered to represent the ar-
bitrary shape of real-life geometries, thus permitting a great
deal of flexibility in the discretization of multi-connected
domains. Since each sub-domain is discretized using a struc-
tured grid, higher-order spatial discretization schemes and
efficient temporal integration schemes can be easily imple-
mented. It is also straightforward to selectively cluster the
grid near solid surfaces without distorting the rest of the grid
system, a feature which is highly desirable in turbulent flow
simulations. Another attractive feature of the overlapping
grids is that they provide a natural level of parallelism for ex-
ecution on modern parallel computers. A major challenge in
the implementation of overset grids in the context of URANS
simulations, however, is the need for careful treatment of the
flow variables at subdomain boundaries to ensure that vor-
tical structures generated in one subdomain can cross grid
interfaces and interact with the flow in adjacent subdomains
without distortion (Tang et al., 2003).

In this work, we extend the overset-grid approach devel-
oped by Tang et al. (2003) to turbulent flows and apply it
to carry out URANS simulations for two geometrical config-
urations inspired by real-life bridge foundations in natural
rivers. The first test case is the flow past a bundle of wall-
mounted rectangular piers. The specific geometry is shown



in Fig. 1 and is the actual foundation geometry of a bridge
over the Chattahoochee River in southern Georgia, USA.
The bundle consists of four rectangular piers located one
behind the other along the flow direction. The geometry is
further complicated by the rectangular concrete slab con-
necting the two middle piers, which, as shown in Fig. 1,
does not extend all the way to the channel bed. The entire
bridge foundation consists of four such bundles across the
bridge span. The second example is a typical bridge abut-
ment geometry consisting of rectangular block attached in
the junction region between the side and bottom walls of
a rectangular open channel as shown in Fig. 6. To illus-
trate the versatility of the overset grid approach we perform
simulations with two different turbulence models. For the
first case we employ the standard k- model with wall func-
tions to bridge the gap between the logarithmic region and
the laminar sublayer. For the second case, we employ the
Spalart-Allmaras model in conjunction with a fine grid near
the wall to directly resolve the flow in the laminar sublayer.
The computed results are compared with mean velocity mea-
surements and images from flow visualization experiments
obtained in the Hydraulics Laboratory of the Georgia Insti-
tute of Technology.

In the following, we briefly describe the governing
(URANS and turbulence closure) equations and the overset
grid numerical method used in this work. We then dis-
cuss results from each of the examples in turn showing the
complexity of each flow and presenting comparisons with
available experiments.

GOVERNING EQUATIONS

The 3D, incompressible URANS equations formulated in
generalized curvilinear coordinates read in compact tensor
notation as follows:
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In the equations above, p is the static pressure divided by
the density, u; (¢ = 1,2,3) are the mean Cartesian veloc-
ity components, z; are the Cartesian coordinates, J is the
Jacobian of the geometric transformation, ¢ is the eddy
viscosity that is calculated from the turbulence model, 52“.
are the metrics of the geometric transformation, U7 are the
contravariant velocity components, g/ are the components
of the contravariant metric tensor, and Re is the Reynolds
number.

For the bridge pier configuration, we use the standard k-
turbulence model with wall functions for turbulence closure.
The model equations are used in their well-known standard
form and are not included here due to space limitations.
To simulate bed roughness in this geometry, we employ the
following generalized wall functions:

ut = %[ln (¥*)]+B-AB (2)

with ut = w/U, and yt = Ury/v where U, is the fric-
tion velocity. The velocity shift AB for uniform sand-
grain roughness is a a function of the bed roughness height
kI = U,ks/v. In this study, we used the velocity shift for-
mulation of Cebeci and Bradshaw (1977) which reads as

AB = [B —85+~In (k:)} sin [0.4258 (In (kT) - 0.811)]
K
for 2.25 < k& < 90 and

1 .
AB = B—8.5+—ln(k5+) for k7 > 90
K
The wall functions are implemented using the two-point ap-
proach described in detail in Sinha et al. (1998). For the
bridge-abutment simulation we employ the Spalart-Allmaras
turbulence model in its standard form.

NUMERICAL METHOD AND OVERLAPPING DOMAIN-
DECOMPOSITION APPROACH

The governing equations are discretized in space using a
three-point central-difference, second-order-accurate, finite-
volume scheme. Third-order, fourth-difference, matrix-
valued artificial dissipation terms (Lin and Sotiropoulos,
1997) are explicitly added to the discrete equations to sup-
press grid-scale oscillations. The discrete equations are
integrated in time using a second-order-accurate, dual-time-
stepping, artificial compressibility scheme. We integrated
the equations in pseudo time using the Beam-and-Warming
approximate-factorization scheme. Typically 20 pseudo it-
erations were required to reduce all residuals by three orders
of magnitude.

We illustrate our overlapping domain-decomposition
method for the geometrically more complicated bridge pier
example. As shown in Fig. 1, a background Cartesian grid is
used to discretize the empty rectangular open channel and
three O-type grids, tailored to resolve the geometrical fea-
tures of the piers, are embedded within the background grid.
The fact the rectangular slab connecting the two middle
piers does not extend all the way to the bottom is accounted
for by embedding a rectangular sub-domain just for this
slab. Such an approach leads to a set of five structured
sub-domains. On each sub-domain, an individual set of gov-
erning equations are solved. A converged solution to the
original flow problem is obtained by iterating on each sub-
domain and communicating boundary conditions at each
boundary interface to the connecting domain via interpo-
lation.

The interface interpolation is implemented in two steps.
First we determine the location of each grid node on the
interface relative to the other domains using a Newton
method. Tang (2001) gives a detailed description of the
grid-connectivity procedure. This grid connectivity infor-
mation can be performed as a preprocessing step and stored
for use during the calculation. The second step is the inter-
polation of the flow variables from the background domain
to the interface of interest. Since we employ a second-
order spatial-discretization scheme for our flow solver, a
second-order interpolation scheme is required to maintain
the overall accuracy. The code we have developed features
both standard trilinear interpolation for all flow variables at
grid interfaces (Steger et al., 1983) as well as the so-called
mass-flux based interpolation approach developed in Tang
et al. (2003). This latter interpolation algorithm is based on
enforcing a second-order accurate discrete approximation of



global mass conservation at each overset grid interface and
has been shown to enhance the overall efficiency of the nu-
merical algorithm as well as the smoothness of the computed
solution across interfaces as compared to the standard tri-
linear approach, especially when the grid spacing of adjacent
subdomains is discontinuous.

Note that in the work of Tang et al. (2003) the gov-
erning equations were solved using an explicit (Runge-
Kutta) dual-time-stepping artificial compressibility iteration
scheme. Tang et al. (2003) were able to obtain good re-
sults with this approach for a number of complex lami-
nar flows, but our early attempts to extend their explicit
iterative scheme to URANS simulations were not success-
ful. Extensive numerical tests showed that when applying
this method to solve the URANS and turbulence closure
equations, numerical instabilities develop at grid interfaces
during the early stages of the dual-time-stepping iteration
scheme. These instabilities were linked to the production
terms in the turbulence closure equations, which depend
on products of velocity gradients. Such terms impose more
stringent smoothness requirements than in laminar flow sim-
ulations because both the velocity field and its gradients
across grid interfaces should be smooth. In fact we found
that to avoid numerical instabilities during the early stages
of the simulation, a smooth velocity field across interfaces
needs to be established within as few dual-time-stepping
iterations as possible. The more robust approximate factor-
ization method we employ in this work was found sufficient
to alleviate this problem and to allow efficient and stable
unsteady simulations over lorig time intervals.

FLOW PAST A BUNDLE OF WALL-MOUNTED RECTAN-
GULAR PIERS

In this section, we apply our URANS method with the
standard k-¢ model to simulate the flow around a complex
bridge pier geometry based on an actual foundation of a
Chattahoochee River bridge (Georgia, USA). The actual
foundation has four sets of piers that span the river. In this
study, we simulate the flow around only one set as shown
in Fig. 1. The computational domain is a 40b x 7b rect-
angular domain, where b is the width of the first bridge
pier (Pier 1 in Fig. 1). The water depth is d = 3.2 b and the
river bed is assumed to be flat. The computational grid con-
tains 5 blocks giving an approximate total of 1 million active
grid nodes. Calculations were carried out for Re = 100, 000
based on the water depth and the bulk velocity at the inlet
of the domain. The non-dimensional physical time step was
At = 0.25. At the inlet, we specified fully developed tur-
bulent flow. The free-surface was treated as a flat rigid lid
and extrapolation was used to specify boundary conditions
for all flow variables at the outflow and lateral boundaries
of the computational domain. The URANS simulation was
conducted for 5000 time steps to obtain a statistically con-
verged mean flow field. Measurements of the flow around
this foundation geometry were conducted in the Hydraulics
laboratory at Georgia Tech using a 1:20 scale model. Model
runs were conducted in flat-bed flume, and the bed was com-
posed of sand with dso = 3.3 mm (hydraulically fully rough
regime). Mean velocity measurements were obtained using
an acoustic Doppler velacimeter (ADV).

Figure 2 shows instantaneous and time-average axial ve-
locity contours on a horizontal plane just below the surface.
The two snapshots (Fig.2a,b) demonstrate the complex na-
ture of the flow and show the large-scale instabilities of the
shear layers emanating from the solid walls, which lead to

asymmetric vortex shedding. It is important to note that
large-scale unsteadiness and asymmetry develop naturally
in our simulations, as the governing equations are iterated
in time, without imposing any kind of explicit forcing on
the approach flow. Also note that the vortices generated
by the multiple piers are transported downstream, cross-
ing boundaries of various overset grids smoothly without
spurious distortions. Figure 2c shows the time-average ve-
locity field obtained by averaging the solution over the entire
simulated interval (5000 time steps). As anticipated, the
time-average flow is symmetric about the horizontal cen-
terline and is characterized by shear-layers emanating from
each pier and zones of reverse flow in the pier wakes.

The three-dimensional complexity of the instantaneous
flow is shown in Fig. 3, which shows a snapshot of instanta-
neous particle paths around the piers. The instantaneous
flow field is composed of an intricate web of horseshoe-
and tornado-like vortices. Video animations show that
these large-scale vortices appear and disappear periodically
throughout the entire simulated time interval.

To validate our computations, we compare the simulated
time-average streamwise velocity field with the experimen-
tal results. The comparisons are shown in Fig. 4, which
depict time-average streamwise velocity profiles at six dif-
ferent planes that are perpendicular to the flow direction.
The locations are shown in Fig. 1: planes F1 and F2 are
located at 0.5d and 0.2d, respectively, upstream of the first
bridge pier; plane F3 is the vertical plane of symmetry of
the first pier; plane F4 lies halfway between the last two
bridge piers; and planes F5 and F6 are downstream of the
last bridge pier. On every plane, we compare the velocity
profiles at three depths: 0.2d, 0.4d, and 0.6 d measured from
the bottom. As shown in these figures, our calculations cap-
ture all experimental trends with good accuracy. This level
of agreement between the computations and the measure-
ments is encouraging given the enormous complexity of the
flow and the fact that the standard k-¢ model was used for
turbulence closure.

The agreement between our computations and the mea-
surements is especially good in the wake of the four piers.
This trend should be attributed to the fact that in this
region the flow is dominated by the interactions of the up-
stream shed large-scale unsteady vortices, which are directly
resolved in our simulation. Fig. 5 compares contours of re-
solved and modeled (time average k predicted by the k-¢
model) turbulence kinetic energy at one horizontal plane.
As shown in the figure, the large-scale structures in the flow
are responsible for producing most of the total turbulence
kinetic energy in the wake region while the turbulence model
accounts for most of the kinetic energy upstream of the last
pier.

FLOW PAST A CORNER-MOUNTED RECTANGULAR
BLOCK

The geometry of the second test case consists of a rect-
angular block mounted in the junction region between the
bottom and side walls of a rectangular open channel with
a flat bed. The Re of 100,000 is based on the mean ap-
proach velocity and the length of the block L. The ratio of
flow depth to the abutment length is L/d = 5. Two over-
set grids are used to discretize this geometry as shown in
Fig. 6: a Cartesian background grid for the channel and
a curvilinear, O-type grid for the region around the obsta-
cle. The total number of active grid nodes in this overset
grid layout is 900,000. The non-dimensional physical time



step was At = 0.025. As mentioned above, we used the
one-equation Spalart-Allmaras model to close the URANS
equations. Flow visualization experiments for this geometry
have been reported by Chrisohoides and Sotiropoulos (2003)
who developed a novel experimental technique for visualiz-
ing and extracting the time scales of coherent vortices at the
free surface.

The general features of this flow as derived by our sim-
ulations and recent visualization experiments (Chrisohoides
et al. (2003), Chrisohoides and Sotiropoulos (2003)) can be
summarized as follows. As the upstream flow approaches
the obstacle, it encounters a strong transverse pressure gra-
dient that diverts it around the obstacle. A large region of
recirculating flow forms at the upstream junction between
the obstacle and the channel side wall. The flow within this
upstream recirculating region is very complex consisting of
multiple, large-scale eddies, which appear and disappear in
- a seemingly random manner. A slowly evolving, large recir-
culating zone is also present at the downstream end of the
obstacle, and a shear layer develops at the interface between
the slow moving fluid within this zone and the flow diverted
around the obstacle. These complex features are illustrated
in Fig. 7, which shows an instantaneous snapshot of the w,
vorticity contours at the surface. The interface of the O-type
overset grid is also included in the figure to further under-
score the ability of our domain decomposition approach to
allow for complex vortical structures to cross undisturbed
from one subdomain to another.

As discussed above, Chrisohoides et al. (2003) showed
that the flow in the upstream recirculation zone consists of
multiple, large-scale eddies with very rich dynamics. The
number and structure of these eddies varies continuously in
time. There are instants in time when a single eddy oc-
cupies the center of the upstream recirculating zone. This
eddy was shown to split into two eddies, which are rotated by
the flow in the counter-clockwise direction, merge to form a
larger eddy, and subsequently could bifurcate again to form
two or more eddies. These complex processes were found
to emerge repeatedly in a random manner. Chrisohoides
et al. (2003) also showed that the upstream corner of the
upstream recirculating zone exhibits similar rich dynamics
with multiple smaller-scale eddies appearing and disappear-
ing randomly. Video animations of calculated instantaneous
streamlines show that our numerical solutions exhibit very
similar patterns as those observed in the laboratory. Repre-
sentative snapshots of the visualized and simulated instanta-
neous coherent eddies in the upstream recirculating region
are shown in figures 8 and 9. As shown in these figures,
the calculated streamlines exhibit patterns that are in good
agreement with the experimental images. Similar conclu-
sions can be drawn from Fig. 10, which compares calculated
instantaneous, snapshots of large-scale vortex shedding from
the obstacle shear layer with the visualization images of
Chrisohoides et al. (2003).

A rather remarkable feature of this flow is that it is char-
acterized by regions of disparate time scales, such as the
slowly evolving upstream and downstream recirculating re-
gions and the unstable shear layer, which is dominated by
high-frequency vortex shedding. The disparity of time scales
and the richness of the temporal dynamics are illustrated in
Fig. 11, which shows calculated time histories of the stream-
wise velocity at two points (locations are indicated in Figs. 8
and 10). Point a is located in the upstream recirculating re-
gion and point b is located within the shear layer. These
two time histories underscore the ability of our method to
simulate flows with very rich temporal large-scale dynamics.

CONCLUSIONS

We presented an overset grid URANS method for pre-
dicting turbulent flows in complex, multi-connected geome-
tries. The method was applied to study two flow cases whose
geometry was inspired by real-life bridge foundations using
both wall functions and a turbulence closure model that is
valid all the way to wall. Comparisons with flow visual-
ization experiments show that the method captures many
of the complex instantaneous, large-scale flow features ob-
served in the laboratory. Quantitative comparisons with
experimental measurements in terms of mean velocity pro-
files further underscore the ability of the URANS approach
to predict complex flows with reasonable accuracy. Our
work shows that (1) overset grids provide a powerful mod-
eling framework for simulating complex, unsteady flows in
multi-connected geometries; and (2) URANS with relatively
simple turbulence closure models can be promising for quan-
titatively accurate predictions of very complex flows that are
dominated by large-scale unsteadiness. Our future work will
focus on more comprehensive quantitative validations of our
method, assessment of the relative performance of various
turbulence closure models, and investigation of the role of
near-wall modeling versus wall functions in the context of
the URANS approach.
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Figure 3: Instantaneous three-dimensional streamtraces
depicting large-scale vortical structures.
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