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ABSTRACT

A direct numerical simulation of quasi-2D (that is with
flow parameters independent of longitudinal coordinate) de-
caying and forced turbulence and 3D turbulence in channel
flow was performed with the intention of ascertaining the
sustenance mechanism of near-wall turbulence by investigat-
ing the mechanism of streak formation. We found the exis-
tence of streaks in quasi-2D flows thus demonstrating that
contrary to many theories, feedback from longitudinal flow
is not necessary for streak formation. Passive scalars hav-
ing different mean scalar profiles were introduced in forced
quasi-2D and 3D turbulent flows in order to compare the
streak spacing of the scalars deduced from two-point corre-
lations of DNS results with results obtained theoretically. It
has been found that even for the same vortex structure for
all the passive scalars there is a marked variation in streak
spacing implying that the preferential streak spacing is not
necessarily linked to the preferential vortex spacing. The
obtained qualitative numerical results are in favour of the
theory of streak formation based on optimal perturbation
(Butler and Farrel 1993) but at the same time they clearly
indicate that the good quantitative agreement reported for
that theory may be fortuitous.

INTRODUCTION

The near-wall turbulence is dominated by organized
structures of two types, namely quasi-streamwise vortices
and streaks. The streaks are primarily alternating high and
low-speed streamwise jets having an average spanwise wave-
length of 100 wall units (Smith and Metzler, 1983). The
quasi-streamwise vortices are roughly 200 wall units long
(Robinson, 1991) and merge into disorganised vorticity af-
ter leaving the immediate wall neighbourhood. Near-wall
turbulence is sustained through a continuous generation and
break-down of these coherent structures which also leads to
development of turbulent wall-drag.

For turbulence to sustain itself, vortices must recur. Nu-
merous regeneration mechanisms have been proposed involv-
ing either the self-reproduction of existing vortices (parent-
offspring scenario) or the instability of a quasi-steady base
flow. In the ’parent-offspring’ scenario according to Smith
and Walker (1994) new vortices are generated by direct
induction near the existing spanwise arch and legs of the
parent vortex. Jimenez and Orlandi (1993) attribute vor-
tex formation to 2D Kelvin-Helmholtz type of roll-up of
near-wall streamwise vorticity sheets. Where an instability
is assumed to be the primary mechanism of streak for-
mation, there is a considerable disagreement regarding its
nature. Majority of the existing theories are essentially
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three-dimensional. This includes all the parent-offspring
scenarios and the instability-based theories including direct
resonance of oblique modes (Jang et. al., 1986), centrifu-
gal instability (Sreenivasan, 1988), shear-driven instability
(Hamilton et. al., 1995), and streak instability without any
parent vortex (Schoppa and Hussain, 1998).

There are two instability-related theories, however,
where the streaks are formed from a non-organised back-
ground even if the dependence of the flow parameters on the
longitudinal coordinate is absent. One is the optimal per-
turbation theory (Butler and Farrell, 1993) which is based
on the linearized Navier-Stokes equations. This theory seeks
a perturbation to the mean turbulent velocity profile such
that its energy grows to a maximum possible value over
the so-called eddy turnover time equal to 7 = g2/, the
ratio of the square of the characteristic turbulent kinetic
energy, q¢° = Wu;u;, to the dissipation rate ¢ = VUi jUq .
It is assumed that in this time the streaks are destroyed
by the chaotic motion. The optimum perturbations turn
out to consist of longitudinal vortices creating the streaks
by the lift-up mechanism. The other theory (Nikitin and
Chernyshenko, 1997) explains the formation of longitudinal
vortices as a result of instability caused by Reynolds normal
stress anisotropy. In near-wall turbulent flows the differ-
ence Q =< v'2 — w2 > between wall-normal and lateral
Reynolds normal stresses is non-zero. Longitudinal vortices
can advect @ and the non-uniformity in @, in turn, can gen-
erate fluid motion. It turns out that in turbulent flow the
distribution of Q is such that vortices can grow. On the
whole this process is similar to the Rayleigh-Benard insta-
bility in a fluid layer heated from below, with the derivative
of @ in wall-normal direction playing the role of the buoy-
ancy force. Both theories, when applied to a usual turbulent
near-wall flow, predict the correct streak spacing. Both the-
ories use empirical data, the Q distribution for the Nikitin
and Chernyshenko (1997) theory and mean velocity and
eddy turnover time distribution for the Butler and Farrel
(1993) theory. For brevity we will use the abbreviations
RNSAI (Reynolds-Normal-Stress- Anisotropy-induced Insta-
bility theory) and OP (Optimal Perturbation theory).

It is generally agreed that streaks appear due to wall-
normal motions of the fluid. Such motions create streaks by
carrying the slowly-moving fluid away from the wall. In a
pure form this mechanism is illustrated in Fig.1. This pic-
ture implies that the streak spacing is determined by and
is equal to the vortices spacing. Accordingly, all theories
except the OP theory predict in fact the dominant vortex
spacing and assume the streak spacing to be twice of the
same. In the OP theory, however, the optimal vortices are
just the vortices which are the most efficient in generating
streaks. While the energy of the optimal streaks grow, the
energy of the optimal vortices decays monotonically. There-
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fore, there is no reason to expect that these vortices will
dominate the flow. This fact, while present in the optimal
solutions, seems to have not yet been recognised.

Figure 1: Lift-up mechanism of streak formation

The present study aims at checking the various theo-
ries of streak generation. Three sets of numerical experi-
ments were performed. In the first and the second set of
calculations we consider flows independent of longitudinal
coordinate. This eliminates all theories that rely on three-
dimensionality of the flow, leaving only RNSAI and OP
theories. To distinguish between them, we prescribe ran-
dom initial conditions with spanwise length scales within a
certain range. Within OP, which is linear, no streaks with
spanwise wavelength outside that range can appear. We also
vary the amplitude of the initial conditions. This does not
affect OP but according to RNSAI, which is non-linear since
the Reynolds normal stresses are non-linear, the instability
can appear only if the amplitude is high enough, so that no
streaks should be observed when the amplitude is below a
certain threshold value. In the first set we allow the cross-
flow motion to decay naturally, while in the second set a
random body force is introduced and the statistically steady
state is analysed. In the third set the limitation of zero
derivatives in the flow direction is dropped, and body forces
are again assumed to be zero. Full DNS of turbulent flow is
performed. In the last two sets of numerical experiments we
introduce passive scalars with different mean distributions in
the wall-normal direction. Streaks in the passive admixture
concentration are expected to be formed by the same lift-up
mechanism. Naturally, the vortex structure is the same for
all passive scalars but OP predicts variation in the streak
spacing as a result of the variation in the mean admixture
concentration profile. We compare the streak spacing in the
passive admixture obtained in calculations with predictions
of RNSAI and OP theories.

QUASI-2D DECAYING TURBULENCE

Initial conditions of mean turbulent streamwise velocity
profile with no perturbations and random cross-flow velocity
perturbations have been considered. The initial conditions
and, hence, the entire solution are independent of the lon-
gitudinal coordinate, z. Since 3/9z = 0, the continuity and
momentum equations take the form (with fz, f, and f, for
a while, being zero):
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where 8p/dx = -1. The boundary conditions are no-slip for

the walls, i.e. u = 0, and periodicity in spanwise and stream-

wise directions. From the equations (1)-(4) it can be seen
that the cross-flow equations do not involve the longitudinal
velocity u, that is v and w are governed by the 2D continuity
and Navier-Stokes equations (1), (3) and (4). For the initial
conditions, a random eddy model has been constructed, in
which the streamwise component u is given by mean turbu-
lent streamwise velocity profile with no perturbations, while
v and w are

o) =43 (- o ESE e )
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i=1

where A is the amplitude by which we can increase or de-
crease the magnitude of the random velocity perturbations,
N is the number of generated random eddies, y; and z; are
the coordinates of the center of the eddies, and 7 and h(7)

are given by
— 2 — 2
\/(Z zz) yz) )

(7)=0, 7>1
h(F):e(’"_l) * <1

In order to have a homogeneous random distribution of
eddies in the spanwise direction, we assume y; = f({,n) =
Ly( where Ly is the length in spanwise direction and ¢ are
the random numbers gencrated based on uniform deviates
which lie within a range of (0 to 1). Similarly, a non-
homogeneous random distribution of eddies in wall-normal
direction is achieved using z; = ¢((,7) = cos(nn), where 7
are the random numbers based on uniform deviates which
also lie within a range of (0 to 1). This gives a larger concen-
tration of eddies near the walls at z = +1. The probability
density function (PDF) p(y, z) governing the distribution of
random eddies in two-dimensional space is given by the re-
lation (Panchev, 1971)

1
L f(n) Lywsin(nn)

ply,2) = p(¢,m)J ™t = (8)

where J is the Jacobian ‘:]f “f]_" . This shows that the
¢ n

PDF of eddy distribution peaks near the walls z==1.

From the definition of number density, we can relate the
mean distance [ between the centers of randomly distributed
eddies to the number of randomly generated eddies N and
the PDF p(y, z) as

1=K 9)

v (p(yis z:)N

where K is a constant. We took a; = I(y;,2;). The eddies
which overlap with the walls are excluded, i.e. if |z; — 1| < a;
or {z; + 1| < a;, we ignore that eddy.

Formation of streamwise streaks

The numerical experiments have been performed in a
computational box of size L, =0.005, L,=6.0 and L, = 2.0
on a grid having 4¥*480*480 nodal points at a Re-=180.0 us-
ing a pseudo-spectral parallel code of Sandham and Howard
(1998) on Linux Beowulf cluster. The Fourier transform was
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performed on the velocity field (5,6), and modes correspond-
ing to highest and lowest fifty wave-numbers were excluded.
The resulting flow field did not contain any wavelength above
0.1 and was used as the initial condition. The simulations
have been performed for a maximum non-dimensional time
of 0.4 at a constant amplitude A = 4.0 and N = 5000 ed-
dies corresponding to a initial cross-flow Reynolds number
Recy = 305 based on mean kinetic cross-flow velocity. The
temporal development of the streaks can be seen from the
fluctuating negative streamwise velocity contours as shown
in Fig.2, corresponding to non-dimensional times 0.05 and
0.4. At t = 0.4, the streak spacing is outside the range
of the wavelengths present in the initial conditions. The
evolution of the power spectrum was analysed. The total
cross-flow perturbation energy quickly decreases, but there
is transient energy growth in the large-wavelength part of
the spectrum. This, of course, is the well-known inverse en-
ergy cascade. However, at the initial stages no wavelength
selection was observed. One should note, however, that this
initial stage was only marginally resolved in our calculations.
Calculations were made with different amplitudes of the ini-
tial velocity perturbation. We did observe disappearance of
streaks where the amplitude was small, however, the thresh-
old value was so small that the influence of rounding errors
cannot be eliminated. The profiles of the difference in cross-
flow normal Reynolds stresses was also calculated. It indeed
exhibit a behaviour which can lead to a transient RNSAL,
but since the mean flow is time-dependent, no direct com-
parison with this theory could be made. The observed streak
spacing increases with time. Figure 3 shows a comparison of
the number of streaks as a function of time as predicted by
optimal perturbations (the data from Fig.3 in (Butler and
Farrel, 1993)) with the number of streaks observed in our
calculations. Therefore, the observed behaviour can be de-
scribed as an initial non-linear inverse energy cascade in the
cross-flow, followed by a decay described by linearized equa-
tions. The decaying cross-flow perturbations then form the
longitudinal streaks via the mechanism described by the op-
timal perturbation theory. At this stage it remains unclear
whether the dominance of the linear OP mechanism is not
simply due to the small amplitude of the initial perturba-
tions. However, we could not increase the initial amplitude
because of the limited computer resources available.

PASSIVE SCALAR ADMIXTURE STREAKS

Passive scalar admixture concentration  is governed by
the equation

g+u§-§+w% =8+ —Relprvze (10)
where S(z) is the source term for the passive scalar. Pro-
vided that the mean profile of § is similar to the mean profile
of the longitudinal velocity, the same lift-up mechanism illus-
trated in Fig 1 which produces the velocity streaks, produces
also ’admixture streaks’, that is regions where 6 is smaller
than average. This allows to isolate the influence of the
shape of the mean profile on the streak spacing. Calculations
with different mean admixture profiles can be performed si-
multaneously, and all of them will have exactly the same
vortex structure. We have modified the pseudo-spectral
channel code of Sandham and Howard (1998), in order to
solve an arbitrary number of passive-scalar equations.

Streaks are not exactly regular, and different definitions
of streak spacing are possible. The velocity auto-correlation
function Ruw(A,2) = (u(t,x,y,2)u(t,z,y + A,z)) has a
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Figure 2: Streamwise velocity w’ at time instants t=0.05
(top) and t=0.4 .
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Figure 3: Comparison of number of streaks for two differ-
ent realisations of decaying quasi-2D turbulence with streaks
computed based on optimal perturbation theory. Seeds 1
and 2 refer to two different sets of initial conditions.

maximum at A = 0 and reaches a minimum at a cer-
tain value Ap;,. For brevity, we omit the argument z in
the following formulae. Streak spacing can be defined as
2Amin. Similarly, the auto-correlation function for the pas-
sive admixture concentration can be used for determining
the admixture streak spacing.

Since the equations for the admixture concentration are
linear, a linear combination of several solutions is a solution.
If§ =3 "7 Aib; then

i=n,j=n

Rgg(A) = Z AiAjRg.q, (D)

i=1,j=1
Note that the averaged profile of the admixture concen-
tration is

§=(0) = i Ai(0:) = liAio‘,».
i=1 =1

Therefore, by solving simultaneously several passive-
admixture equations with different source terms and calcu-
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lating the cross-correlations Ry, g, (A) it is then quite easy to
calculate the auto-correlation function and, hence, the streak
spacing, for any linear combination determined by the vector
of coefficients A;. Such calculations were performed both in
2D randomly forced flow and in 3D flow. To check the con-
cept, one of the calculated admixture concentrations was a
linear combination, so that its auto-correlation function was
calculated both directly and by the method described above,
and the results coincided. We also compared the streak spac-
ing as calculated from the auto-correlation function with
the streak spacing as it, although rather approximately, was
obtained from visualisation, and again found that our linear-
combination approach works.

For checking to which extent the streak spacing can be
varied by varying the mean admixture profile, the following
method was used. We sought for such a vector (A4;,...,An)
of unit length that the corresponding auto-correlation func-
tion is as small as possible at the specific value of A = Ag.
This leads to a minimisation problem for the functional

i=n,j=n

D" Ai4;[Ro0;(80) — Xdi ;] » min

i=1,j=1

were ) is the Lagrange multiplier and 4;; is the Kronecker
delta. This, in turn, can in a standard way be reduced to
a linear eigenvalue problem. This method was used both in
2D randomly forced and in 3D flow cases to obtain passive-
admixture solutions with quite large and quite small streak
spacing. Naturally, for linear combinations obtained in this
way, the minimum of the auto-correlation function does not
exactly coincide with Ag, but in practise Ag and Ap;y, turn
out to be close within a reasonable range of Ag.

Six basic admixture mean profiles were calculated. For
completeness, the best choice of the basic profiles would be a
sufficiently large number of Chebyshev polynomials, so that
practically any mean profile could be represented as a lin-
ear combination of them. However, the required computer
resources would be too large. So, we compromise by tak-
ing three profiles of the shape more or less close to what
seemed to be of possible interest and three other profiles as
trigonometric functions. The profiles we used were defined
via its derivatives with respect to z, because this derivative is
needed for OP theory. Introducing two auxiliary functions,

R
o(z,Re) = 05(1+ (0.525?6(1 422~ 27%)
(1 — e-=1DBP)y2y05 _ g5

(g9(z, Re) has been used to generate Reynolds-Tiederman
profile, as in Waleffe and Kim (1991)), and

(- Sibd=a?y (c14dean)?)
h(z,d, w) = 150(e ) —e = ),

the derivatives of the basic mean profiles are

6" = —zxRe/(1+9(2))
6’ = h(z,0.20,0.150)
6" = h(z,0.10,0.075)
6 = sin(l x 71+ 2)/2)
65 = sin(3xw(l+2)/2)
0 = sin(5xw(1+2)/2)

Figure 4 shows the statistically averaged wall-normal varia-
tion of mean scalar profiles 81 to 6.
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Figure 4: Statistically averaged wall-normal variation of
mean scalar profiles 6;

In order to be able to perform comparisons with OP and
RNSALI theories, we also developed a set of computer codes
for calculating the streak spacing for given Q distribution
according to the RNSAI theory and the streak spacing for
given mean profile and eddy turnover time according to oP
theory. In the latter case the optimal perturbations were
assumed to be independent of the longitudinal coordinate,
which is, anyway, correct. These codes were verified by re-
producing the results from the corresponding papers and
then used for the forced 2D and natural 3D cases considered
below.

QUASI-2D FORCED TURBULENCE

The numerical experiments were carried out by sub-
jecting quasi-2D turbulent flows to statistically steady-state
forcing using random amplitude body force terms (Tsinober,
2001) in the governing Navier-Stokes equations. The initial
conditions are the same as mentioned above for quasi-2D
decaying turbulence.

The body forces f, and f; in eqns. (1)-(4) have random
amplitude in time with zero mean, a sinusoidal spatial varia-
tion of fixed wavenumbers ({,k) in spanwise and wall-normal
directions and a peaked near-wall amplitude in wall-normal
direction ¢(z). In order to generate peaked near-wall forcing
which reduces to zero toward the centre of the channel, var-
ious functions ¢(z) have been used ranging from Dirac delta
to two-hump functions. The forces are then given as

o= At cosCRY(z) cos( )
y z
0.5A(wyt)(z — 702 Ly sin( L) (2) cos( 2552
fy = wl
A(wst)kLy sin(222)¢(z) sin(Z2)
T ] )

on using divergence-free body force condition. Here ((z)
approximates a Dirac delta function centered at zo with its
width controlled by a factor n and is given mathematically

as
C(z) = e(—0.5n2(z—zo)2)

The results presented below were obtained numerically at
Re =360 on a 4x256x 160 mesh for wall-normal Dirac delta
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function having z, = 0.95 and n = 20 with a fixed spanwise
wavenumber I= 55, wall-normal wavenumber k=1, ampli-
tude A = 0.05 and a forcing frequency wy = 100 in terms
of non-dimensional time. The forcing of the flow leads to
fully-developed turbulence by the time ¢t = 25.0. The flag
is then turned on to perform statistical averaging and the
statistics is gathered for a very long time till £ = 330.0.

The most noticeable feature of this calculation is the
presence of the inverse energy cascade. Even though the
forcing length scales are small, the energy of long-wave
modes is quite high, thus making it difficult to obtain the
distribution of Q similar to that observed in real flows. By
adjusting the forcing profile ((z) we achieved reasonably
good behaviour of Q near the walls, where the streaks are
formed, but it remained, in contrast to natural 3D flows,
far from zero in the center of the channel. When RNSAI
theory calculations were performed we had to ignore the
central part of the obtained Q profile. The original (aver-
aged) Q profile and the profile used for RNSAI calculations
are shown in Figure 5.
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Figure 5: Statistically averaged and spline-interpolated Q vs
z profiles

We then used the technique described above to obtain
linear combinations of the passive admixture solutions with
considerable variation of the streak spacing. For each of
these admixture solutions, which we denote 0,1,...,0n5,
OP theory was applied and the streak spacing calculated.
The results are summarised in the following table.

Scalars | Streak spacing, normal units
DNS | RNSA OoP
On1 0.25 0.86 0.33
Ono 0.59 0.86 0.55
On3 1.30 0.86 0.61
0n4 2.62 0.86 0.78
Ons 4.21 0.86 0.97

Table 1: Comparison of streak spacing of scalars 8,; from
DNS results of two-point correlations of randomly forced 2D
turbulence, from RNSA and OP theories.

3D TURBULENT CHANNEL FLOW

For the third set of experiments, numerical simulations
were performed in a periodic channel of L, = 6, L, = 3 and
L, = 2 at Re =360 using 128 x128x160 mesh with the pas-
sive scalars. Starting from a base laminar flow with random

perturbations, a fully-developed turbulent flow evolves by
the non-dimensional time ¢ = 12.0. The flag is then turned
on to perform statistical averaging and the statistics is gath-
ered till time ¢ = 34.0. The averaged profiles and statistics
are in a good agreement with available data. The cross-
correlation functions were calculated and then used to build
linear combinations of the basic solutions (which were taken
to be the same as in the 2D randomly-forced case) with sig-
nificant variation of the streak spacing. The mean passive
admixture profiles of these linear combinations, which we
denote 03p4,...,03p5, are presented in Figure 6.
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Figure 6: Mean profiles f3p;.

Calculation were then perfonmed using the RNSAI and
OP theory, and the results are presented in the Table 2. All
the data correspond to the distance to the wall z = 0.01.
However, it turns out that reliable calculation of the auto-
correlations functions for profiles in Figure 6 require no-
ticeably greater averaging period than the averaged period
required for the basic profiles. For this reason the val-
ues in the DNS column of Table 2, related to the profiles

03p1,...,03p5, should be considered as preliminary esti-
mates.
Scalars | Streak spacing, wall units
DNS [ RNSA OP
'} 115 140 100
02 560 140 230
83 500 140 150
04 600 140 420
/3 520 140 500
93p1 216 140 535
03D 540 140 595
93p3 605 140 840
93p4 1080 140 720
O3ps 1080 140 660

Table 2: Comparison of streak spacing obtained from DNS,
RNSA and OP for 3D turbulent channel flow.

Note the major point of our results, both in 2D and 3D,
namely, strong variation of the streak spacing with variation
in the mean scalar profile, while the vortex structure remains
the same.

CONCLUSIONS

e Streaks can form in case when all flow parameters are
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independent of the longitudinal coordinate. This is
the condition at which there is no feedback from the
longitudinal flow profile, including the streaks, to the
cross-flow vortex structure.

o The streak spacing strongly depends on the mean pro-
file even when the vortex structure is fixed. Theories
which assume the streak spacing being equal to twice
the vortex spacing, like, for example, RNSA theory by
Nikitin and Chernyshenko (1997), cannot explain this
fact. The only existing theory which describes similar
qualitative behaviour is the OP theory by Butler and
Farrell (1993).

e In many cases the streak spacing obtained with the
optimal perturbation theory differs considerably from
DNS results. Therefore, the good agreement between
the quantitative prediction of this theory and streak
spacing in the case, when the mean profile coincides
with the mean velocity profile, may be fortuitous.
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