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ABSTRACT

A recently proposed curvature corrected explicit alge-
braic Reynolds stress model (CC-EARSM) based on a formal
derivation of the weak-equilibrium assumption in a stream-
line oriented curvilinear co-ordinate system is further anal-
ysed and tested. The method is based on the rate of change
of the strain-rate tensor following the mean flow and is
fully three-dimensional, Galilean invariant and consistent in
fully developed swirling flow. The predictive and numerical
capabilities of the model are demonstrated using different
standard non-commercial CFD solvers. The reduction of the
Reynolds stresses in a zero-pressure gradient convex curved
boundary layer and the inner wall in a U-duct flow due to
the stabilising curvature is clearly shown. Moreover, the sta-
bilising effect due to the swirl in a swirling combustor flow
is significantly altering the swirl velocity component com-
pared to the standard EARSM. In general, the curvature
correction has been shown to significantly improve the re-
sults compared to the standard EARSM. In many cases, the
results are close of these obtained using the full RSM. The
curvature correction imposes some numerical problems and
degenerates the convergence rate in some cases.

INTRODUCTION

Algebraic Reynolds stress models result from applying
the weak equilibrium assumption on the full differential
Reynolds stress models. In the weak equilibrium limit of
turbulence, the Reynolds stress anisotropy tensor, a;; =
U; /K — (2/3)é8;5, is assumed to be constant following a
streamline. Neglecting also the diffusion of the anisotropy
tensor results in an implicit purely algebraic relation for a;j,
which may be formally solved resulting in an explicit rela-
tion (EARSM), see e.g. Pope (1975), Taulbee (1992), Gatski
& Speziale (1993), Girimaji (1996) and Johansson & Wallin
(1996).

The advection by the mean flow (D/Dt = a/ot +
Ur0/0zy) of a scalar field is zero if the scalar is homoge-

neous in the mean flow direction. However, the advection
of a tensor field of higher rank than zero, e.g. vectors and
second rank tensors, is not necessarily zero even if the flow
is homogeneous in the mean flow direction.

This can be understood by transforming D/Dt to a gen-
eral curvilinear co-ordinate system, e, using the orthogonal
transformation Ty; (T}, Ti; = 6ij)
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where a;; is a represented in the Cartesian co-ordinate sys-
tem e; = (&, 4, 2]. The first term at the r.A.s is a differential
term that represents the material derivative of the individ-
ual components of a represented in the system €; (afj) and
the second term is a purely algebraic term resulting from the
curvilinear co-ordinate transformation where Qg) is directly
related to the transformation through

Ty — (aszg?) - Qg;c)akj) (1)
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Girimaji (1997) and Sjogren (1997) realized that the
additional algebraic term may be written in terms of an an-
tisymmetric tensor QE; , which represents the rotation of
the e} system following the streamline. This term can eas-
ily be accounted for in the EARSM solution by modifying
the absolute vorticity tensor (2;; resulting in a “curvature
corrected” model, CC-EARSM.

If the flow is homogeneous in the mean flow direction,
e.g. in fully developed swirling flows, the differential term,
the first term at the r.h.s of (1) represented in an appropriate
co-ordinate system, will vanish. The non-zero Da/Dt will,
thus, be exactly represented by the second algebraic term,
which represents the variation of the components of a due
to the rotation of the principal directions following the mean
flow.

In general flows which contain regions of strong swirl or
streamline curvature, we cannot in advance choose the op-
timal co-ordinate system, so we need to find a method of



deriving the measure of the co-ordinate system rotation rate
Qg) from the flow field. Only a few Galilean invariant meth-
ods have been proposed. Girimaji (1997) proposed to use the
rotation rate of the acceleration vector and Gatski & Jon-
gen (2000) used the rotation rate of the principal direction
of the strain-rate tensor. However, these methods were only
derived for 2D flows.

Hellsten (2002) has found that the acceleration based
method leads to problems in some situations of mild curva-
ture where the direction of the acceleration vector may vary
rapidly. This was demonstrated in a U-bend flow, which
showed an almost singular behaviour. For the same case,
the strain-rate based method behaves much better.

Recently, Wallin & Johansson (2002) proposed a fully
three-dimensional method based on the strain-rate tensor,
which will be examined and tested in this study. In two-
dimensional mean flows, the method by Wallin & Johansson
reduces to the Gatski & Jongen (2000) correction. In fully
developed swirling flows, which is fully three dimensional,
the proposed method has been shown to be identical to the
exact transformation.

Turbulent flows over curved surfaces, near stagnation
and separation points, in vortices and turbulent flows in
rotating frames of reference are all affected by streamline
curvature effects. Strong curvature and/or rotational ef-
fects form a major cornerstone problem also at the Reynolds
stress transport modelling level. Some of the effects of
streamline curvature or local rotation is captured already
in standard EARSMs. E.g. the Coriolis term that appears
when transforming the Reynolds stress transport model
equation to a rotating frame is composed by two equal parts
that originate from the transformation of the production and
the advection respectively. The production part is naturally
captured also in standard EARSMs while the advection part
is not.

In cases with moderately curved streamlines the neglec-
tion of the advection part has a rather minor effect, see e.g.
Rumsey, Gatski & Morrison (1999) for flow over an airfoil,
but in other cases the inclusion of the curvature correction
is significant. That is the case in e.g. vortices (Wallin &
Girimaji 2000), in rotating flows like rotating homogeneous
shear and rotating channel (Wallin & Johansson 2002) and
in curved channels as well as in swirling flows, as will be seen
in this paper.

CURVATURE-CORRECTED MODEL

The curvature corrected EARSM (CC-EARSM) pro-
posed by Wallin & Johansson (2002) will be repeated herein
for clarity. It is based on a formal approximation of a
Reynolds stress transport model including an approximation
of the advection of the anisotropy.

General quasi-linear Reynolds stress transport models
may be written in terms of a transport equation for the
anisotropy tensor

() =] (10 2)
+A18;; — (aikaj - Qika‘kj) ®)
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see Wallin & Johansson (2000). DE;) is the diffusion of a;
and 7 = K/e is the turbulent time-scale. The strain and
rotation rate tensors, S;; and ;;, are normalized by 7.
This relation results from the general quasi-linear model for
the pressure-strain rate and dissipation rate anisotropy, e;;,
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Figure 1: Computed rotating channel flow for Ro = 0.77
compared to DNS of Alvelius & Johansson (2000). Curva-
ture corrected original (——=) and recalibrated (——) WJ
EARSM compared to the non-corrected EARSM (------).
U = 2w,(,r) (=-—-) is also shown. (figure taken from Wallin
& Johansson, 2002)
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The A coefficients are related to the C coefficients through
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Introducing the curvature correction for the original
choice of the Ag coefficient in the Wallin & Johansson (2000)
model leads to a model that predicts rotational effects poorly
as shown by Wallin & Johansson (2002) and also observed
by Wallin & Girimaji (2000) for the vortex flow. Wallin &
Girimayji found that the WJ model behaviour was improved
by increasing Ag to a value closer to that of the linearized
SSG.

A more thorough analysis of the effect of the Ap coeffi-
cient was done by Wallin & Johansson (2002), where the long
time asymptotic behaviour in rotating homogeneous shear
flow was considered. Depending on the rotation number the
turbulent kinetic energy grows exponentially with constant
P/e or follows a power-law solution where e/(UyK) — 0
(Speziale & Mac Giolla Mhuiris 1989). The bifurcation
points between the two solution branches correspond to the
points where C’;(fﬁ) becomes zero or where the flow is close
to neutral stability. Neutral stability occurs near rotation
number Ro = 0.5 and is also likely associated with the lin-
ear velocity profile in the core of a rotating channel (local
Ro=~0.5) according to Pettersson-Reif et al. (1999). Thus,
the model coefficients are calibrated such that the required
bifurcation point Ro = 0.5 is obtained. The A coefficients
proposed by Wallin & Johansson (2002) are Ag = —0.72,
Ay =1.20, A =0, A3 = 1.80 and A4 = 2.25.

The recalibrated model is tested in rotating channel flow
in figure 1. Both the curvature correction and the recalibra-
tion are of significant importance in predicting the slope of
the mean flow velocity profile in the centre of the channel.
Also the relaminarization at the stabilized side is captured.

Strain rate based curvature correction

The advection of the strain rate tensor S may, similarly
to the advection of the anisotropy tensor (1), be expressed as
a differential plus an algebraic term arising from the trans-



WJ EARSM

0.0 T
0.2

o4
W,

08 0.8
W

10

Figure 2: The skin-friction coefficient along the convex wall, the velocity profile and turbulent shear stress at s = 71 in.
Experiment by So & Mellor (1973). The stresses are transformed into the local wall-tangential and -normal coordinate system,

and Upy is the theoretical potential velocity on the wall.
formation to the curvilinear co-ordinate system, e’
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The assumption made by Wallin & Johansson (2002) was
that, since the anisotropy and the strain rate tensors are re-
lated, the co-ordinate system for which the differential part
of the advection of S is minimized is used also for transform-
ing the advection of the anisotropy. This may be obtained
by finding the solution for the () tensor from (6) where
the first term on the r.h.s. is set to zero. However, that
equation system is overdetermined since there are five (two
in 2D} independent equations for DS/Dt and three (one in
2D) independent components of £2(*),

By using that Qf;) = —6ijkw,(cr) the equation for the ad-
vection of the transformed S;; in (6)) becomes

(Saeijk + Sjtetin) w,(cr)
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e;; may be minimized in a least square sense by minimiz-
ing the norm e;;e;;, which, for this case, is equivalent with
Spreig€pgs = 0. That results in the following expression for
(r)

the rotation vector w;

DS,

(r)
w; = Ay Splﬁlfequ
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where
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The denominator in (9) may become zero when two of
the eigenvalues are equal or all eigenvalues are zero. The
singularities at these points may be avoided by adding a
small number to the denominator.

In two-dimensional incompressible mean flows, w®

. re-
duces to

S11812 — 812811
25%, + 253,

which is identical to the Spalart & Shur (1997) and the
Gatski & Jongen (2000) corrections.

wgr) = (10)

Implementation aspects

The strain-rate based curvature correction methods in-
volve numerical approximation of DS/Dt. In steady-state
problems (time-dependent problems not considered here) the
derivative of the S tensor may be expressed in conservative
form as

U 38,5 1 38

kY = Ta

1
- S Ux) = —— Ui
Oy B, (p ij k) 2 f pS”Uknde (11)

where S is the control volume surface and 7; is the unit
normal vector of the control surface. In this formulation,
the different components of DS/Dt may be computed di-
rectly without the need of evaluating all components of the
gradient of S.

The velocity gradient components are computed onto
each face of a control-volume or cell using local staggered
cells. The derivatives of the strain-rate components are then
computed in the cell centrepoints. This way the numerical
error can, in principle, be kept small. However, spatially os-
cillating distribution of DS/Dt may be obtained, especially
when high-resolution grids are employed. Presently, this
problem is handled by applying a spatial filter for the com-
puted rotation vector w(*). A top-hat filter of the width of
three computational cells in each direction is employed. This
turned out to be a sufficient remedy in the two-dimensional
flows considered in this study. In the three-dimensional
swirling flow, some spatial oscillation still occurs in the recir-
culation zone, but this neither prevents the iteration from
converging nor spoils the results. It is felt, however, that
the numerical computation of DS/Dt still needs some fur-
ther attention.

TEST CASES

Two-Dimensional Boundary Layer on a Convex Wall

A convex curved boundary layer experimentally studied
by So & Mellor (1973) will be used for basic validation of
the curvature corrected EARS-modelling. The concave outer
wall is contoured to obtain a nearly constant pressure dis-
tribution on the inner wall. The CC-EARSM will be tested
using two different ways to obtain w:(;) : the Wallin & Johans-
son (2002) strain-rate based method (8), which reduces to
Eq. (10) in two-dimensional mean flows, and the streamline
method in which wér) is simply the rotation rate of the veloc-
ity vector following a streamline. The latter method is not
generalizable due to its lack of Galilean invariance, but can
be used as a reference here because the coordinate system
can be attached to the apparatus. The results will be com-
pared with the experimental data, with the results obtained
with the standard EARSM derived in the inertial coordi-
nate system (iWJ), and with full differential Reynolds stress
model (RSM) predictions using the corresponding pressure-
strain model, see Hellsten et al. (2002) and Salo (2003).

The skin-friction coefficient along the convex wall is
shown in figure 2. Clearly, both CC-EARSMs as well as
the RSM agree well with the measurements while the stan-
dard EARSM slightly overestimates the wall shear-stress as
expected. The velocity and turbulent shear-stress distribu-
tions are also shown in the figure. The differences in the
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Figure 3: Turbulent shear stresses for the U-duct flow, in the
beginning of the curved part, § = 0 deg (left), and in the
middle of it, § = 90 deg (right). The stresses are transformed
into the local wall-tangential and -normal coordinate system.
Legends as in figure 2.

velocity profiles are quite small, while the shear-stress dis-
tributions reveal the differences more clearly. The turbulent
shear stress —uv is damped by the curvature effect. This
damping effect is most pronounced in the outer part of the
boundary layer. The RSM and the CC-EARSMs capture
this effect quite accurately in this case, while the standard
EARSM captures it only partially. This is clear, because
the streamline curvature enters in the RSM in two terms,
the production and the advection. The standard EARSM
only involves the former effect while the idea behind the
curvature correction technique is to approximate the latter
one. The choice of the method to approximate wsr) makes
no difference in this case. The curvature correction seem to
not remarkably affect the stability and the convergence rate
of the computations in this particular case.

Plane U-Duct Flow

The plane U-duct flow experimentally studied by Mon-
son & Seegmiller (1992) is a flow with much stronger cur-
vature effect, since the radius of curvature is of the same
order as the length scale of turbulence. In addition to the
streamline curvature, there are strong pressure gradients,
flow separation, and some three-dimensional phenomena.

Computations are performed using the same models as
for the So & Mellor flow. The differences in the velocity
profiles are almost negligibly small, especially, in the first
two stations. This is because the pressure-gradient strongly
dominates over the Reynolds-stress gradient in the mean-
momentum equations.

The Reynolds shear-stress profiles are shown in figure 3
at two locations. There are large differences between the pre-
dicted shear stresses already in the beginning of the curved
part. The strain-rate based correction allows best agreement
with the measurements near the convex wall. The stream-
line correction and the RSM also give shear-stress profiles
quite close to the measured data. The standard EARSM
predicts a shear-stress profile that largely follows the strain
rate and is therefore of opposite sign with the experimen-
tally observed values, except in the immediate vicinity of
the wall. The effect of the curvature correction here is pri-
marily to reduce the coefficient of the first-order term 81.5;;
in the EARSM. Owing to this reduction, the second-order
term

Ba (S1x0%5 — Q1 Sk2) = 475 (S11 — S22) (12)
becomes dominating. As a result of this, the right sign and
magnitude is predicted for the shear stress in this area. Near
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Figure 4: An illustration of the swirling combustor by
Roback and Johnson (1983) with a typical streamline pat-
tern (projected onto the plane). Vertical line indicates the
location where the velocity profiles are studied. Note the
horizontal shrinking of the image.

the outer wall, the CC-EARSM variants seem to overesti-
mate the shear stress to some extent in this station.

In the middle of the curved duct (6 = 90 deg), the shear
stress is almost zero on the inner side, except in the near-
wall region. This is also in a quite good agreement with the
experiments. The RSM predicts a small amount of positive
shear stress while the CC-EARSM variants give practically
zero shear stress in this region. The computations also re-
veal that, according to the RSM and the CC-EARSMs, the
reversal of the normal-stress anisotropies takes place in this
region, that is, 70 > Tu. This phenomenon is known to
occur in shear flows subjected to rapid destabilizing span-
wise rotation, see, for example, Bech & Anderson (1997).
On the outer side of the duct, all models agree with each
other reasonably well in this station. However, the pre-
dicted shear stresses are by far too low in comparison with
the experiments. This difference is likely due to streamwise
Taylor-Gortler vortices typically found in concave-curved
boundary layers, see Monson et al. (1990). Such vortices
should be distinguished from the turbulent motion, because
they are quite deterministic in structure. The present two-
dimensional computations obviously do neot capture such
vortices, and the turbulence models are not designed to
model such non-turbulent instabilities. The effect of these
vortices is, however, included in the measured stresses.

In this case, the use of the curvature correction seems to
reduce the numerical stability and the convergence rate to
some extent, but not intolerably much.

Three-Dimensional Swirling Flow in a Model Combustor

Swirling flows involve additional strain components
which may significantly influence the turbulence. The eddy-
viscosity models are known to be unable to correctly capture
these effects. The sensitivity of the algebraic Reynolds-stress
models to the swirl effects is dependent on the coordinate
system in which the weak-equilibrium assumption is made
just like the sensitivity to planar curvature. Swirling flow is
merely a more complex example of a curved flow. Here we
will study the model combustor flow experimentally studied
by Roback & Johnson (1983). The geometry and the flow
are axisymmetric and the swirl velocity is induced by the in-
flow boundary conditions, see figure 4. The computational
domain begins from the inlet plane and extends several tens
of chamber diameters downstream of the interesting area.
The details of the computational parameters are given by
Hellsten et al. (2002).

The CC-EARSM will be tested using two different ways
to obtain wgr): equation (8), and a simplified streamline
method that accounts for the swirl velocity-component only.



06 © EXP upper side
® EXP, lower side

r
50 75 0o Bs
fogt 4
V' /U2,y *0

-
0.0 25

Figure 5: Velocity and shear-stress distributions in the
model combustor in the station z = 406 mm.

Owing to the axisymmetry, this is simply

w
W =5y - (13)

where 7 is the local radius from the axis of revolution. In the
downstream part of the chamber, the radial velocity compo-
nent and the axial derivatives are small, and the correction
should then approach that of equation (13). Close to the
inflow plane, (13) is expected to be in error, and the 6-
component of the rotation rate becomes non-zero due to
curvature in the x — r plane. See Hellsten et al. (2002)
for more results. The CC-EARSM results will be compared
with the experimental data, with results computed using an
RSM, with standard iWJ EARSM results, and with linear
eddy-viscosity results. The RSM used in this case is not ex-
actly the parent model of the EARSM, but it is close to it.
This particular RSM is of general linear type and the model
coeflicients are reported by Rung et al. (1999) in context of
another algebraic model derived from it.

The axial and circumferential mean-velocity components
as well as the shear-stress components T and 7 are shown
in figure 5 in the station & = 406 mm, see figure 4. An exces-
sive axial velocity defect on the axis of revolution predicted
by the CC-EARSMs and by the RSM is a salient feature.
The linear eddy-viscosity model (EVM) predicts a linear
rise of the azimuthal velocity similar to a solid-body motion.
The standard iWJ EARSM can handle the curvature effect
on production processes which lead to slightly better but
still qualitatively wrong azimuthal velocity profile. A suit-
able prediction of all relevant effects is maintained by the full
differential Reynolds stress model without the assumption of
local equilibrium. This model can tackle streamline curva-
ture and gives a good representation of the velocity profiles.
The CC-EARSM using (8) as well as the a priori curvature
correction according to (13) leads to results of almost the
same quality as that of the RSM. The most important shear
stress TW in the regions of low strain-rate downstream the
recirculation is in a very good agreement with that obtained
by the RSM.

The outflow conditions that do not properly model the
experimental setup are probably the origin of the axial veloc-

ity dip on the axis. The high swirl rate induces low pressure
near the axis and this makes the flowfield very sensitive to
the outflow conditions. The experimental setup featured an
endplate at £ =~ 1000 mm and an exhaust duct mounted in
90 deg. angle relative to the chamber axis. This was not
known at the time of the computations. Attempts to better
simulate the outflow will be left for the future work.

The convergence rates of all computations in this case
were slow. This is partially owing to the stiffness introduced
by the very long computational domain. The strain-rate
based curvature corrections tend to inhibit the convergence
rate even more. The streamline-based correction seems to
not have such an unfavourable effect in this case.

CONCLUDING REMARKS

Streamline curvature effects on turbulence exist in two-
dimensional flows mainly in curved or rotating boundary
layers. The ratio of the boundary layer thickness to the
radius of curvature is a rough measure of the rate of influence
on the turbulence. In high Reynolds number external flows,
the curvature effect is not very large. However, the effect is
rather easily captured by the curvature corrections proposed
in this study, as well as corrections proposed in previous
publications.

In three-dimensional flows, the flow topology often in-
cludes swirl and vortices, which may be strongly influenced
by curvature and rotational effects. This is a much more dif-
ficult situation, but based on the computational results on
the swirling combustor flow reported here, the effects can be
captured by the curvature correction based on the strain-
rate tensor proposed by Wallin & Johansson (2002). It is
important that both the curvature correction itself and the
EARSM are extended for three-dimensional flows.

In general the curvature correction proposed in this study
has been shown to significantly improve the results com-
pared to the standard EARSM. In many cases, the results
are now much closer to the full RSM. However, the correc-
tion is rather complicated both due to complex algebraic
expressions and due to the need of obtaining another level
of derivatives of the velocity vector. The numerical stability
is also somewhat degenerated.

The major argument of standard EARSM compared to
full RSM is that the computational effort for computing com-
plex three-dimensional cases using full RSM is very much re-
duced by using EARSM, which behaves numerically similar
to standard eddy-viscosity models. By adding the curvature
correction to the EARSM, this argument is not as clear any-
more and one needs to be very careful in arguing for further
extensions of the EARSM level of modelling.
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