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ABSTRACT

Two new subgrid scale turbulence models are proposed. The first
one is an extension of the classical structure function model. It is
shown, that the modified structure function model can be used in
Germano’s dynamic process (Germano 1992). The second model
utilizes a given scale similarity ansatz, which models the subgrid
scale stresses in terms of resolved stresses and determines the scaling
parameter assuming assuming scale invariance of an eddy-viscosity
model. The performance of the derived subgrid scale models has
been tested in fully developed turbulent channel flow at low Reynolds
number (based on the channel height H and friction velocity ur) of
Re =360. The same flow was computed by means of underresolved
direct numerical simulation (DNS) without model and LES with a
dynamic Smagorinsky model. First and second order statistics of the
statistically averaged flow field generated in LES using the scale sim-
ilarity model agree well with DNS data by Kim et al. (Kim 1987).

INTRODUCTION

Principally, there are three different approaches to predict turbu-
lent flows numerically. Due to the dramatically increased efficiency
of the super computers and new numerical methods it is possible to
solve the time-dependent Navier-Stokes equations (1) and (2)
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without any turbulence model in a Direct Numerical Simulations
(DNS). In eq. (1) and (2) the incompressible dimensionless Navier-
Stokes equations are presented. Furthermore, the notation of eq. (1)
and (2) is that of the equations used to simulate the turbulent channel
flow. In this respect the velocity vector i = (ux,uy,u;) and the nabla
operator V are non-dimensionalized with the friction velocity u; and
the channel height H. p and r denote dimensionless values of pressure
and time and by Re; = Hu. /v the Reynolds number, which contains
the molecular kinematic viscosity v, is defined.

The huge computational resources, which are required to conduct
a DNS restricts their application to turbulent flows at lower Reynolds
numbers with a in most cases academic objective. However, the
obtained turbulent flows solutions are characterized by random three-
dimensional fluctuations with a continuous spectrum of length scales
ranging down to flow structures which dissipate the excessive energy,
the Kolmogorov scales.

Turbulent flow calculation with a more applied objective were
and are still performed solving the Reynolds averaged Navier-Stokes
equations (RANS) to obtain the statistically averaged mean flow field
(i) and (p). In many cases the obtained solution is stationary and,
depending on the number of homogeneous directions involved, one-
or two-dimensional. The statistical approach is associated with the
highest loss of information and with a closure problem which is not
satisfactory solved. Spectral information is completely lost, since any
statistical quantity is an average over all turbulent scales. The ob-
tained flow field describes the mean flow, which is enough for many

applied problems, while the turbulent information is described with
the Reynolds stress tensor (u;' u;), which has to be modelled with em-

J
pirical or semi-empirical models.
A first reduction of the number of unknowns can be accomplished
applying the eddy viscosity principal, which was first introduced by

Boussinesq (Boussinesq 1925),

non
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where u;’ = u; — (u;) represents the statistical velocity fluctuation
in tensor notation, k = 1 /2(u;.'2) the turbulent kinetic energy, S;; =
1/2(3(u;)/ox; + 9(u;)/x;) the mean strain rate tensor and & the
identity tensor. Furthermore, eq. (3) contains the eddy viscosity v;,
which has to be determined from known flow variables. This funda-
mental assumption defines the wide class of eddy viscosity models.
There are a huge number of different turbulence modelsi, most of
which use the eddy viscosity ansatz, but so far there is no generally
valid statistical turbulence model.

In the last decade the interest in time-dependent, three-
dimensional analysis of turbulent flows increased, since many tech-
nical problems are associated with large scale motions. To obtain
these time-dependent flow structures researchers conduct instationary
RANS simulation on three dimensional meshes with increasing num-
ber of grid points approaching the third technique catled Large-Eddy
Simulation (LES). This method basically resembles a compromise be-
tween RANS and DNS since it allows to predict the dynamics of the
large turbulent scales while the effect of the fine scales are modeled
with a subgrid-scale model.

The governing equations, which have to be solved in a LES are
derived applying a filter function on the Navier-Stokes equations.
Usually the filter function is chosen according to the applied dis-
cretization technique, i.e. a spectral cut-off filter is used for spectral
discretization and a box-filter in finite-difference or finite-volume dis-
cretization. The kernel used to filter the flow field on a finite volume
AV is presented in eq. 4.
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Filtering the velocity vector u; for example, one obtains the low-pass
filtered velocity vector &, which differs from u; by the local velocity
fluctuation or subgrid scale u:», as pointed out in eq. (5).
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Low-pass filtering of the Navier-Stokes equations (1) and (2) with eq.
(4) formally removes scales with a wavelength smaller than the grid
mesh. The obtains filtered Navier-Stokes equations (6) and (7) read:
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Eq. (7) contains the unknown subgrid scale stress tensor T;; = ZIZ
which is the analog to the Reynolds stress tensor, and the filtered
strain rate tensor S; ;= 1/2(0m;/dx; + dit;/9x;). To use the eddy vis-
cosity concept eq. (3) to approximate T;; for LES was first proposed
by the meteorologist Smagorinsky, who simulated large scale atmo-
spheric motions. In Smagorinsky’s model (Smagorinsky 1963) the
eddy viscosity is proportional to a mean grid length scale A and the

local strain rate | 5 |= 4/1/28;;5i;.
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where vsyr = (CsmA)?4/ $5i;5;; defines the eddy viscosity of the
Smagorinsky model. An approximate value for Csyr was derived by
Lilly (Lilly 1965), assuming that the cut-off wavenumber in Fourier
space lies within the k=53 decay of an Kolmogorov cascade (k de-
notes the wavenumber). In this range, the energy spectrum E (k) =
Cxe?*k3/3 is characterized by Ck, the Kolmogorov constant. As-
suming Cx = 1.4 a Smagorinsky constant Csy = 0.18 is obtained.

Applying the Smagorinsky model for engineering applications
though, the value Cspy = 0.18 leads to excessive dissipation. That’s
why a value of Csy = 0.1 was used for channel simulations by Moin
and Kim (Moin 1982) and for LES of a backstep flow by Arnal and
Friedrich (Arnal 1992).

For wall-bounded flows it is necessary to adjust the value of C;
as it is done in the dynamic model by Germano (Germano 1992).
The latter provides an expression for the constant Csyf in terms of the
resolved scales which is a function of time and space.

Another class of widely used eddy-viscosity models are the
so-called structure-function models. Assuming three-dimensional
isotropic turbulence in Fourier space, where all wavenumbers &
greater than the cutoff wavenumber k. are suppressed and a Kol-
mogorov cascade exists, Kraichnan (Kraichnan 1976) derived the so-
called spectral eddy viscosity in spectral space. Presuming a subgrid-
scale kinetic energy dissipation, which equals the overall dissipation
&, the spectral eddy-viscosity was transformed into the physical space
by Leslie and Quarini (Leslie 1979).
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For a given local kinetic-energy spectrum Ey(k.) and a uniform
mesh width A, the local spectrum can be calculated in terms of the
local second-order structure function of # using Batchelors (Batchelor
1953) relation
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to obtain the eddy-viscosity of the structure function model by Meétais
and Lesieur (Métais 1980)

3
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Both, the Smagorinsky model and the structure function model
were derived under similar assumptions. The first who addressed the
question, how these two models relate was Comte (Comte 1994). He
pointed out, that the structure function model can be replaced by

VST 0.777(C5MA)2\/ 23,']'3,‘]' +o;0; , (12)

where ; denotes the vorticity vector, in a first-order approximation
in the limit of vanishing grid spacing.

Any eddy viscosity model is purely dissipative. Thus, these mod-
els are unable to account for backscatter effects, i.e. the transfer of

energy from small to larger scales. Furthermore, in analysis of ex-
perimental and numerical data (Liu et al. (Liu 1994) and Clark et al.
(Clark 1979)) it was shown that the exact subgrid scale stress tensor
correlates very poorly with the strain rate tensor. However, between
7;; and the Leonard stress tensor Lij = u-,Aﬁ —w;7;, for the two top-hat
filter widths A and A > A, they observed high corellations.

Assuming, that the subgrid scale stress tensor can be estimated
directly from the resolved velocity field, Bardina et al. (Bardina 1980)
suggested the first scale similarity model, for which filtering is applied
twice with the same filter width A.

Tj =W — Wk (13)

Filtering with two different filter widths is performed for the scale
similarity model by Liu et al. (Liu 1994). But this model contains
an unknown constant C, which are positive with values lower than 1
according to measurements by Liu et al. (Liu 1994).

Tij =CLL;j (14)

However, when these scale similarity models (eq. (13) and (14))
were used in LES both models hardly dissipate any energy, although
the cotrelation between T;; and the Leonard tensor L;; turned out to
be comparably high, if top-hat filtering or Gauss filtering was applied.
Faced with this difficulty Bardina et al. (Bardina 1980} already sug-
gested to add a dissipative eddy-viscosity term in his mixed model

;=T wji— % — 2(Csuh)” | 5] Sij (15)

Although adding the eddy-viscosity term in the mixed model was
performed in a rather ad hoc manner, this cured most of the problems
of Bardina’s model. Later many variations of mixed models were
proposed. One of them is the one by Liu et al. (Liu 1994), who
calculated both constants Cr and Csy in their mixed model

7 =CLij— 2(CsmA) | 515 (16)

with Germano’s dynamic process solving a 2 x 2-system of equa-
tion in order to minimize the error.

It is the aim of this work to investigate, how closure of Liu et al’s
scale similarity model can be obtained utilized the dynamic process
by Germano (Germano 1992). Furthermore, the structure function
model is modified to use it in the dynamic process. The performance
of the newly derived models will be tested in LES of turbulent channel
flows for low Reynolds number.

NUMERICAL METHOD

The incompressible Navier-Stokes equations (1) - (2) are inte-
grated applying Schumann’s volume balance procedure (Schumann
1973) in cartesian coordinates. This leads to a set of spatially discrete
equations on staggered grids, which represent the discrete counterpart
of the filtered incompressible Navier-Stokes equations (6) - (7). Uti-
lizing second order central interpolation and differentiation schemes
leads to a method which is suitable for LES. Time integration is per-
formed with a explicite second order accurate Leapfrog time step,
which is restricted by a linear stability criterion.

A fractional step approach provides the oscillation-free coupling
between pressure and velocity fields and leads to a three dimensional
Poisson equation for the pressure correction, which has to be solved
at each time step. The direct solutions of these Poisson problems are
obtained using FFT’s in x- and y-directions and a tridiagonal matrix
algorithm for the remaining 1D-Helmholtz problems.

OUTLINE OF THE COMPUTATIONS

Large-Eddy simulation of turbulent channel flow are conducted
to test the performance of subgrid scale turbulence models. The
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domain of computation extending 2w x X 1 in cartesian x x yXz-
directions is bounded by two horizontally extending plates. The
channel height H denotes vertical separation of these plates. Peri-
odic boundary conditions are applied in the horizontal streamwise
and spanwise directions, x and y. No-slip conditions for the tangential
velocity components u, and uy are used at the wall. The impermeabil-
ity condition prescribes a vanishing wall-normal velocity component
u; =0 forz/H =0 and z/H = 1, the z-coordinates of the plates.

The flow is driven by a constant pressure gradient dp/ox = —2.
The Reynolds number, based on the friction velocity uy, the chan-
nel height F and the kinematic viscosity v, is Re; = (uH)/v = 360.
The simulations are performed on meshes with 64 and 32 equidis-
tantly distributed grid points in x-direction and y-direction, and 95
grid points, which are refined in wall normal z-direction using a tan-
gent hyperbolic law. Finally, at time r = 0 the simulations were started
with random and small wave number velocity perturbations, which
were superimposed on a analytical solution of laminar channel flow.

A MODIFIED STRUCTURE FUNCTION MODEL

As already noted by Comte (Comte 1994), the Smagorinsky
model and the structure function model are closely related. This is not
surprising, since both models were derived under the same assump-
tion. However, the structure function model of Métais and Lesieur
(Métais 1980) is not compatible with the dynamic process by Ger-
mano (Germano 1992). Therefore, it is worthwhile to investigate the
structure function model in more detail.

Discretizing the structure function model eq. (11) leads to the
following expression for the function F (xi,A):

F(xi,A) = (1 B(x) —T(x +A) )2
+ | E(n) =Ty (x +4) P a”
+ | E) ~ T+ A) 2

Assuming isotropic meshes with equidistant grid spacing A, the finite
differences in eq. 18, for example 7 (x;) — (x; + A), are equivalent
to a second order accurate central differences, if eq. (refdisStr) is
divided by A. Therefore, eq. (18) can be expressed as follows
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Introducing the velocity gradient tensor A j = O; /dxj ineq. (19),
€q. (11) can be expressed by

vs7(xi,8) = (Csr &)\ /A&y with €3 =0.105C,%>  (19)

The main advantage of eq. (19) is its applicability in the dynamic
process, because the velocity gradient tensor can be determined on
the grid filter level A and on test filter level A. For the latter the flow
field is explicitly filtered over the volume element AV = 2AX2AyAr
applying the kernel of the top-hat filter

N A o~ 7 - o~
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The deviatoric part of the subgrid scale tensor t;j reads
_2 P —
fij == /38~ —CA” |A|S; @21
where A = . /4, ,-Zi j represents a norm of the local velocity gradi-

ent tensor.

The deviatoric part of the subgrid scale stress tensor T;; is evalu-
ated from the velocity field of the test filter.
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Furthermore, following Germano (Germano 1992) the deviatoric
part of the Leonard tensor L;; reads

Lij—1/3Lud;j = T —F; (23)

If Tij and 4;; in eq. (23) are substituted by eq. (22) and eq. 21)a
equation is obtained, which can be solved for Csy applying the least
square formulation by Lilly (Lilly 1992).

L& ;
Cor = - — @4)

Negative values for C§T are obtained frequently in a region close
to the wall, if eq. (24) is computed in a LES of turbulent channel flow
for a Reynolds number Re, = 360. Therefore, as proposed by Lilly
(Lilly 1994), CfT is statistically averaged in streamwise and spanwise
directions.

Results

In Fig. | and Fig. 2 - 4 the mean velocity profiles and profiles
of rms velocity fluctuations obtained in two LES, one utilizing the
dynamic Smagorinsky model and the other one applying the above
derived dynamic modified structure function model, are compared
with DNS results by Kim et al. (Kim 1987) who performed spec-
tral simulations. Additionally, results of underresolved DNS using
the above described finite-volume method are shown. The mean ve-
locity profiles of the two LES are similar but high compared to Kim et
al’s results (Fig. 1). This is typical for LES of low Reynolds number
flows with eddy viscosity models. On the other hand the underre-
solved DNS leads to mean axial velocities which are low, indicating
the need for an effective turbulence model to reliably predict this flow.
That the two subgrid scale model lead to similar results is also indi-
cated in Fig 2 - 4, where the rms velocity fluctuations of both LES
reflect almost similar results. But u,, rms is too high and u,, rms and
uz,rms are low compared to the spectral DNS results, again a typical
feature of eddy viscosity modeling.

DYNAMIC SCALE SIMILARITY MODEL

To model the subgrid scale tensor based on scale similarity with
the Leonard stress tensor was first proposed by Liu et al. (Liu 1994).

T = CeLij = Cy(@i; — Tii)) (25)

In measurements of turbulent jet flow he observed high correla-
tions between the subgrid scale tensor and Leonard stress tensor and
constants Cy, ranging from 0.6 to 0.8, but no applicable method to
determine Cy, was proposed.

In this work we propose to determine Cj, utilizing the dynamic
process (Germano 1992). To achieve this the deviatoric parts of the
subgrid scale stress tensors ; j and T;; are approximated with any eddy
viscosity subgrid scale model. Below we apply the Smagorinsky
model, but the modified structure function model could be used as
well.

T S 22 2 o=
i~ =2GPA 515, and Ty~ 267301315, @6
The scale similarity model eq. (25) is rewritten in terms of the de-

viatoric parts of the subgrid scale stress tensor and the Leonard stress
tensor (see eq. (23)),
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Figure 1: Mean velocity profiles calculated in LES, using the dynamic
Smagorinsky model and the new dynamic modified structure function
model compared to underresolved DNS results and Kim et al.’s (Kim
1987) spectral DNS data.
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Figure 2: Profiles of streamwise rms velocity fluctuations calculated
in LES, using the dynamic Smagorinsky model and the new dynamic
modified structure function model compared with an underresolved
DNS results and Kim et al.’s DNS data.

tij = Cr(Lij— 1/3Ly8;j) = Co(Tij— 1 — 1/3 [T —Tudij]) 27

Substituting t;; and T;; in eq. (27) by eq. (26) leads to the follow-
ing relation for the unknown factor Cy..

-2 =, = =2 = = -2 —_
A |S|Sij=CL(a |S]8i;—[Aa"S]Si]) (28)
Eq. 28 can be solved with the least square formulation by Lilly
(Lilly 1994). Principally, Cy, is a function of space and time. However,
the high correlation between T;; and L;; (eq. (25)) and between their
statistically averaged counterparts (t;;) and (L;;) must be conserved.
Thus, it is necessary that C, behaves smoothly in all homogeneous
directions and in time. To enforce this, Cy, is statistically averaged as
given by
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Figure 3: Profiles of spanwise rms velocity fluctuations calculated in
LES, using the dynamic Smagorinsky model and the new dynamic
modified structure function model compared with an underresolved
DNS results and Kim et al.’s DNS data.
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Figure 4: Profiles of wall-normal rms velocity fluctuations calculated
in LES, using the dynamic Smagorinsky model and the new dynamic
modified structure function model compared with an underresolved
DNS results and Kim et al.’s DNS data.
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With eq. (29) closure for the scale similarity model in eq. @7 is
achieved.

Results

To test the scale similarity model a LES of turbulent channel flow
is performed. The dynamically computed distribution of (CL) for a
certain time is depicted in Fig. 5. The value of (CL) ranges from ~ 0.3
at the wall to ~ 0.7 for y/H = 0.15. The values agree remarkably
well with those, Liu et al. (Liu 1994) obtained in their measurements
of turbulent jet flow. Additionally, C;. turned out to be positive every-
where in the flow field, therefore, no stability problems were observed
during the computation.

In Fig. 6 the streamwise mean velocity profiles computed
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Figure 5: Wall-normal distribution of the scale similarity constant

(CL).

with underresolved direct numerical simulation (DNS) (LES without
model), with LES using the dynamic Smagorinsky model and with
LES utilizing the new scale similarity model are presented in logarith-
mic scaling over wall distance in wall units, i.e z* = zRe,. They are
compared to DNS data by Kim et al. (Kim 1980). While the underre-
solved DNS leads too low mean velocity profile, the use of dynamic
Smagorinsky model generates velocity profiles which are too high.
The mean velocity generated with the new model agrees remarkably
well with the data of Kim et al. (Kim 1980). In Fig. 7 the resulting
deviatoric part of the Reynolds stress tensor

Rij = Quiuj) — (uid () = 1/3((um) — () )85 (30)

is compared to the according data of Kim et al. (Kim 1980). It
is demonstrated that the used scale similarity model produces reliable
results in LES of turbulent wall-bounded flows.
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Figure 6: Mean velocity profiles calculated in LES compared to to
fully resolved DNS data by Kim et al. (Kim 1987) and to underre-
solved DNS data.

SUBGRID SCALE ENERGY DISSIPATION

Dissipation of subgrid scale energy is the amount of energy which
is transferred from resolved to unresolved scales. It is well known that

z/H
Figure 7: Profiles of the deviatoric part of the Reynolds stress tensor
calculated in LES with the new scale similarity model compared to
fully resolved DNS data by Kim et al. (Kim 1987) denoted by sym-
bols.

the mean dissipation of subgrid scale energy is negative everywhere
in the flow field, but backscatter of energy form small to large scales
can be observed locally in space and time. In order to investigate this
energy transfer Hirtel (Hartel 1994) proposed to split the production
term of the transport equations for kinetic subgrid scale energy into a
mean and a fluctuating term, as presented in eq. (31).

(55) = (TS5 + (15,55 ). @31

The term on the left hand side of eq. 31 represents the total produc-
tion of subgrid scale energy in the subgrid scale energy equation (not
shown). It is split into the first term on the right hand side of eq.
(31), which expresses the production due to the mean strain rate and
the second term, which is the production due to the fluctuating strain
rates. These production terms of the subgrid scale energy equation
are equivalent to the dissipation terms of the resolved scale energy
(turbulent kinetic energy) equation.

0 0.1

0.2 0.3

0.4 Z/H 0.5

Figure 8: Dissipation of subgrid scale energy due to mean strain rates
and fluctuating strain rates

While the first term of the right hand side of eq. (31) is negative
for all z/H, as depicted in Fig. 8, the second term reveals a local max-
imum with positive dissipation rates due to fluctuating strain rates.
This local maximum reflects the backscatter of energy. Therefore, it
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is concluded that in LES with the scale similarity model backscatter
effects are predicted.

CONCLUSIONS

Two new subgrid scale turbulence models are proposed. The
first one is represents a modification to the classical structure func-
tion model by Métais and Lesieur (Métais 1980). The advantage
of this modified structure function is, that it can be used within the
dynamic process by Germano (Germano 1992). The model was val-
idated comparing results obtained in LES of turbulent channel flow
at Reynolds number Re; = 360 to results obtained in LES with the
dynamic Smagorinsky model (Smagorinsky 1963), in underresolved
DNS and with Kim et al’s (Kim 1987) spectral DNS data. This
comparison reveals, that the new structure function model and the
Smagorinsky model lead to similar results. Both are too dissipative
leading to mean velocity which are too high.

The second model is a scale similarity model. A new approach
to compute the scaling constant in a given scale similarity model by
Liu et al. (Liu 1994) is proposed. Again the LES results obtained
with this model are compared to Kim et al. DNS data. Excellent
agreement was obtained. It is further shown, that the model reliably
predicts backscatter effects.
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