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ABSTRACT

A new dynamic subgrid scale (SGS) stress model of the
eddy viscosity type is proposed. This dynamic model
depends on the assumption of energy transfer, i.e. the local
inter-scale equilibrium, instead of the Germano identity on
which traditional dynamic models depend. The choice of
the energy transfer theory as the resolution principle for the
dynamic procedure is natural because the main purpose of
eddy viscosity models is to simulate the energy transfer
between the grid scale and subgrid scale accurately. One of
the advantages of the new model is no necessity for an ad
hoc averaging treatment over a statistically homogeneous
region, which has limited the application of dynamic
models only to simple geometries. The validity of the
proposed model is shown in the analysis of the plane
channel flow.

INTRODUCTION

In fluid machine design, engineers often need to estimate
the unsteady turbulent flow field for which they have high
expectations of computational fluid dynamics (CFD). Large
eddy simulation (LES) will be a promising approach to
meet these expectations, but not yet.

The Smagorinsky model proposed by Smagorinsky
(1963), which is a classical SGS stress model of the eddy
viscosity type, has uncertainty of the model parameter, i.e.
the Smagorinsky constant Cs . Germano er al. (1991)
proposed a dynamic Smagorinsky model (DSM) to
overcome this defect. This model derives the optimum
value of Cy from the Germano identity. The least square
method proposed by Lilly (1992) is used as a dynamic
procedure to calculate the value of Cg from the Germano
identity.

In spite of advantages, the DSM has not been put to
practical use in fluid machine design yet. This is because
applicable geometries of the DSM are limited to simple

ones. To avoid numerical instability, averaging treatments
over statistically homogeneous regions are introduced into
Lilly’s dynamic procedure. This prevents the appllcatlon of
the DSM to complex geometries.

A dynamic SGS model of the eddy viscosity type
without ad hoc averaging treatments over homogeneous
regions is proposed in this paper. The main difference
between the proposed model and the traditional DSM is
that the proposed model calculates the optimum value of
the model parameter based on a theory about energy
transfer instead of the Germano identity.

TRADITIONAL SGS MODELS OF EDDY VISCOSITY
TYPE

Basic Equations for Large Eddy Simulation

The basic equations for incompressible flows are the
grid-filtered continuity and Navier-Stokes equations given
as follows.
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Here w; is the velocity component of x; direction, p is
the pressure divided by the density, oi; =2vS;; is the
viscous stress tensor, v is the kinematic viscosity, Si; is
the strain rate tensor defined as follows,
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and 7; =Uu; - 4;G; is the SGS stress tensor. The
overbar = denotes the grid-filtering operation.
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Energy Transfer Effect by SGS Stress
The grid scale kinematic energy corresponding to the
grid scale (GS) velocity field is affected by the SGS stress.
The effect of the SGS stress is understood through the
transport equations for the kinematic energy of the grid
scale and the subgrid scale.
The transport equation of the grid scale kinematic energy
defined as Ky, = Uriix/2 is expressed as follows.
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Here eg4s is the viscous dissipation rate from the grid scale.
The transport equation of the subgrid scale kinematic
energy defined as Kyqs = (TxUr — Ualx) /2 is expressed
as follows.
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Here K = uu,/2 is the kinematic energy corresponding
to the non-filtered velocity field, €sgs is the viscous
dissipation rate from the subgrid scale and € = ;55 is
the total viscous dissipation rate.

The SGS stress appears in Eqs.(4) and (6) in the same
form of —7i;8;; “with opposite signs. Energy is
transferred between the grid and subgrid scales in the wave
number space by these terms. The term —7;5:; can be
positive (forward scatter) or negative (back scatter)
instantaneously. In the case of forward scatter, part of the
energy is pumped out of the grid scale by the SGS stress
and an equal amount of energy is provided to the subgrid
scale. On the average, energy flows from the grid scale into
the subgrid scale.

This energy transfer effect is very important for SGS
modeling from the viewpoint of numerical stability as well
as computational accuracy because underestimation of the
average energy dissipation from the grid scale often causes
numerical instability. So SGS models should represent the
energy transfer effect of the SGS stress.

Eddy Viscosity Models
Eddy viscosity models generally approximate the SGS
stress tensor as follows. :

* 1 o
Tij =Tij — §5ikak = _ZVeSij (8)

Here &i; is the Kronecker delta and v. is the eddy
viscosity. The asterisk “*” denotes the trace free operation
for a tensor.

Eddy viscosity models generally assume that the trace
free operated SGS stress tensor is proportional to the strain
rate tensor. But the assumption is not always true.
Consequently eddy viscosity models show low correlations
with the SGS stress by nature.

Nevertheless eddy viscosity models are widely used in
engineering because these models have abilities to
represent the energy dissipation effects of the SGS stress.
Or rather it would be better to say that eddy viscosity
models are designed to represent the energy dissipation
behavior of the SGS stress. So the main issue of eddy
viscosity models becomes how to determine the eddy
viscosity to simulate the energy dissipation accurately.

For example, the Smagorinsky model approximates the
eddy viscosity as follows.

ve = (CsA,)" IS ©

Here || = (2Sij§ij)%, Cs is the Smagorinsky constant
and A, is the characteristic length of the grid-filter.
Although there is a slight difference from the optimum
value utilized actually, the theoretical value of the
Smagorinsky constant can be derived from some
assumptions about energy transfer in the wave number
space. The first assumption is the local energy equilibrium
within the subgrid scale. The second is that the viscous
dissipation from the subgrid scale is almost the same as the
total viscous dissipation. The last is that the characteristic
wave number of the grid-filter is within the inertial
sub-range and the energy spectrum function obeys the
Kolmogorov 5/3-law. From all these assumptions, the
theoretical value of the Smagorinsky constant is given as

follows.
1/ 2\
Cs= p (§C—K> (10)

Here Ck is the Kolmogorov constant. With Cx = 1.5,
Eq. (10) gives Cg =~ 1.73.

Dynamic Smagorinsky Model

The dynamic Smagorinsky model derives the value of
the Smagorinsky constant using the Germano identity
(Germano et al., 1991), which is expressed as follows.

Li; = Gty — sty = Tij = Fij (an

Here L;; is a resolved turbulent stress tensor and T is
a subtest scale (STS) stress tensor. The hat = denotes the
test-filtering operation.

Generally the modeled SGS and STS stress tensors,
denoted as 77 and Tj; respectively, do not satisty the
Germano identity. Substitution of 77 and T into Eq.
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(11) yields the error tensor 7ij as follows.
Vi = Lig = T + 73 (12)

The model parameters of SGS models are determined so as
to minimize the inner product of the error tensor, 7ijVij.
When a SGS model has n-parameters, each parameter Cj
can be calculated from the following system of equations.

OViivis
o6, ~ 0 k=L (13

The above procedure is the general extension of the least
square method proposed by Lilly (1992). Application of
this dynamic procedure to the Smagorinsky model gives the
value of the Smagorinsky constant as follows.

1 (L3; Mij) (14)
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Here Ayt is the characteristic length of the test-grid-filter
<, and () denotes the averaging operation over a
statistically homogeneous region. The averaging operation
has the effect of preventing numerical instability, but limits
the application of the DSM to simple geometries.

There is some doubt about the reasonableness of
application of Lilly’s dynamic procedure to eddy viscosity
models. When it comes to eddy viscosity models, model
parameters must be determined so that energy dissipation
from the grid scale is simulated correctly. But the
traditional dynamic procedure using the Germano identity
does not guarantee accuracy for the energy dissipation
because there is no explicit relation to energy dissipation.

PROPOSAL OF A NEW DYNAMIC PROCEDURE
FOR SGS MODEL OF EDDY VISCOSITY TYPE

Local Inter-Scale Equilibrium Assumption

Instead of the Germano identity, an alternative resolution
principle utilized in the dynamic procedure for eddy
viscosity models has to be found. Such a principle is
derived from the theory about energy transfer.

Flow fields filtered by the test-grid-filter are considered.
A schematic of energy spectrum in the wave number space
is shown in Fig.1. Here k; and ki, are the characteristic
wave numbers of the grid-filter = and the test-grid-filter
= respectively. The region k <k, is called the test
scale, k > k;, is the subtest scale, k,, < k < ky is the
intermediate scale and so on.

The intermediate scale is a remarkable region because
both the SGS and STS stresses have a role in the energy
transfer of this region. And information for this region is
available in calculation of LES because this region is
within the grid-filter resolved scale.

When the kinematic energy corresponding to the test
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Fig.1 Energy transfer in the wave number space.

scale is defined as K, = iy tix/2, the intermediate scale
kinematic energy can be expressed as Kis = Kgs — K, .
The transport equation of K, can be derived as follows.
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Here €:s is the viscous dissipation rate from the test scale.
By assuming energy balance within the intermediate
scale, the following relationship is derived from Eq. (16).

—

Ets — Tijéij = €gs — TiSi; (18)

Eq.(18) means that a portion of the energy transported from
the test scale to the intermediate scale by the STS stress is
dissipated by the viscous stress and the rest is transported to
the subgrid scale by the SGS stress. This energy balance
between the test-grid-filtered flow field and the
grid-filtered one is called a “local inter-scale equilibrium”.

Dynamic Procedure for Eddy Viscosity Model

The SGS and STS stress tensors are unknowns in Eq.(18).
Here the SGS stress is approximated using Eq.(8) which is
the generalized eddy viscosity model. The STS stress is
approximated as T{? using the Taylor expansion instead
of the eddy viscosity model, because application of the
eddy viscosity model both to the SGS and STS stresses
only gives an indefinite solution. Substitution of the models
for the SGS and STS stresses into Eq.(18) yields the
following expression for the eddy viscosity.
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This is the core equation of the dynamic procedure for the
SGS stress model of the eddy viscosity type proposed in
this paper. Other expressions for the individual eddy
viscosity models such as the Smagorinsky model can be
derived in the same way, but they are not adopted here
because Eq.(19) gives the eddy viscosity which is the very
goal of the eddy viscosity models.

No averaging operations over statistically homogeneous
regions are introduced into the new dynamic procedure so
as not to limit applicable geometries. But to avoid negative
viscosity, which violates stable calculation by nature, the
clipping technique is introduced as follows.

T3Sy~ (1151 - vI5P)
Ve = mMax 0, - —— (20)
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Approximation of Subtest Scale Stress

In the proposed dynamic procedure, the concrete
expression of the approximated STS stress tenor Tl’; must
be defined. Additionally before derivation of T, U , the
expression of the grid-filter and the test-filter must be
defined.

Here a usage of a finite volume method (FVM) for space
discretization is assumed. The volume averaging operation
corresponds to the grid-filtering operation in the FVM. A
scalar f in three-dimensional space can be expressed as
follows using the Maclaurin expansion.

kad i)
f(zl,zg,z;;) = Z (13k6_ak
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a1=0,a2=0,a3=0>

Integration of Eq.(21) over a computational cell yields the
expression of the grid-filtering operation as follows.

1} 8% f h2h2  Bf
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Here it is supposed that the cell geometry is a rectangular
parallelepiped, each edge of which is parallel to one of the
coordinate axes and the centroid of which is on the
coordinate origin. Here h; is the length of the edge
parallel to the z; coordinate axis.

A formulation of the test-filtering operation is not unique.
The test-filtering operation is defined here as follows.
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Here the subscripts (ij.k) denote computational cell
indexes and (3 is a parameter related to the characteristic
length of the test-filter. The Taylor expansion gives the
following equation.
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Substitution of Eq.(24) into Eq.(23) yields the test-filtering
operator in differential form as follows.
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The application of Egs.(22) and (25) to the STS stress
tensor yields the following equation.
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It is not easy to handle Eq.(26) directly. For the sake of
programming convenience, Eq.(26) is approximated using
Lij, Lij and (fi; — %) as follows.
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This approximate equation covers all terms of O(h%) and
a part of the terms of O(h*) on the right hand side of
Eq.(26), and its error is estimated as follows.
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A lower order approximation, which covers only all
terms of O(h?) on the right hand side of Eq.(26), also can
be given as follows.

TA = 1+ 3%

ij = 42 ——Li; =Tij — O(h4) (29)
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VERIFICATION OF PROPOSED MODEL

Numerical Method

The proposed model is built in the simulation code with
the following specifications. The FVM is adopted for space
discretization. The collocated grid system is used for the
allocation of the velocity and the pressure. For the
convection term, a central differencing scheme with fourth
order accuracy in space and the 4-step Runge-Kutta scheme
with fourth order accuracy in time are applied. For the
diffusion term, the central differencing scheme with second
order accuracy and the Crank-Nicolson scheme are applied.
A MAC like scheme is applied for the divergence free
correction of the velocity and the pressure.

Test Cases

Simulations of the fully developed plane channel flow
with Re,.=395 are performed to verify the proposed model.
Here Re: is the Reynolds number based on the wall
friction velocity ur and the channel half width §. The
computational domain is set up as 6.45 %245 x1.65 and
periodic treatments are applied to streamwise ( x ) and
spanwise ( z ) directions. Coarse grids (case 1) and fine
grids (case 2) are tested. The resolutions of computational
grids are summarized in Table 1.

Computational Results

Two variations of the proposed dynamic SGS model of
the eddy viscosity type, i.e. the model with Eq.(29) that is a
lower order approximation of the STS stress and the model
with Eq.(27) that is a higher order approximation, are
verified with f=1. Hereafter the first and the second models
are named LISEA2 and LISEA4 respectively.

For comparison the Smagorinsky model with Cg=0
(NOSGS), Cs =0.1 (SM010) and Cg =0.15 (SMO15) is
verified. All these cases adopt the wall dumping function of
the Van Driest (1956) type.

In spite of no averaging operation, all calculations of
LISEA2 and LISEA4 are numerically stable. The results
are shown below together with DNS results obtained by
Moser et al. (1999).

Fig.2 shows the mean streamwise velocity profiles in the
wall unit. Fig.2(a) shows the results of case 1. All models
without NOSGS overestimate the velocity at the log-law
region and it is because of the discretization error. The
result of LISEA4 is close to the result of SM010, which is
regarded as the best-tuned version of the Smagorinsky
model for plane channel flow. LISEA2 gives a slightly
lower velocity than the results of SM010 and LISEA4 at

Table 1 Resolutions of computational grids. N is a grid
number and 4" is a computational cell size in the wall unit.
case Nx Ny Nz hat h* h*
1 32 64 32 79 1.1-45.8 19.8
264 64 64 395 1.1-458 9.9

the log-law region.

Fig.3 shows the profiles of the velocity fluctuations.
LISEA2 and LISEA4 give almost the same results. Clear
differences between LISEA2,4 and SMO010 are shown in
Fig.3(a) and LISEA2,4 give closer results to the DNS data
than SM010.

Fig.4 shows the mean energy transfer rate from the grid
scale to the subgrid scale, <6;s—sgs>t. For LISEA2 and
LISEA4, £gs--sgs is given as follows.

Egs—sgs = "Tz?ézj + V[§l2 - V|§]2 (30)
For SM010 and SMO1S5, &gs—ggs is give as follows.
Egs—sgs = (CSAQ)2|§!3 (31)

SMO010 and SMO15 dissipate much more energy from the
grid scale than LISEA2 and LISEA4 in case 1. The
difference between LISEA2 and LISEA4 is small. LISEA2
and LISEA4 give a negative value near the wall both in
case 1 and case 2, and this suggests the occurrence of
backscatter. But in this study the effects of backscatter are
not reflected in the calculation because of the clipping
treatment.

CONCLUSIONS

A new dynamic SGS stress model of the eddy viscosity
type was proposed. This model applies the energy balance
assumption named the “local inter-scale equilibrium” as the
resolution principle of the dynamic procedure instead of the
Germano identity. This model does not need an ad hoc
averaging treatment over a homogeneous region to avoid
numerical instability.

The analysis of the fully developed plane channel flow
using the proposed model showed the numerical stability of
the model. The present model with higher order
approximation of the STS stress gave the mean streamwise
velocity close to the results of the Smagorinsky model with
the wall function and with C¢=0.1, which is the best-tuned
version of the Smagorinsky model for plane channel flow.
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