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ABSTRACT

Computation of turbulent flows with free-surface fluctu-
ations is considered within the framework of the Reynolds-
averaged equations of motion and the continuity equation.
The mean position of the free surface may be either steady
or chaging slowly but the instantaneous position is assumed
fluctuating in space and time. The computation of the
flow in changing flow domain in the framework of Eulerian
Reynolds-averadged equations requires a special treatment
as to the Eulerian averages as well as computation of the
moving boundary. A method is proposed to incorporate the
effects of randomly moving free surface in the widely used
k — w two equation turbulence modeling. Calculations are
conducted and the results are compared with experimental
results wherever possible. Lack of accurate data of the free-
surface position and fluctuation amplitude prevents definite
evaluation, but generally the employed two-equation scheme
is satisfactory.

INTRODUCTION

Turbulent flows with moving boundaries such as the free
surface of an open-channel flow are influenced not only by
the existence of the free boundary but also by its motion
both turbulent and non-turbulent. The position and the
shape of the free surface are also, influenced by the turbulent
motion within the flow, and they depend on each other. Tur-
bulent flows with free surfaces must therefore be calculated
along with the mean position and the fluctuation of the free
surface when its movement is not small. The present work
is concerned with a method of how the turbulent fluctua-
tions of the free surface and the related statistical quantities
may be modeled so that open-channel flows with significant
surface movement can be calculated.

As to the models for the Reynolds stresses, the present
authors (nakayama & Yokojima, 2001a) have tested recent
two-equation turbulence models developed for shear flows
without a free boundary to calculation of open-channel flows,

both near equilibrium and widely deviated from equilibrium
but the with small variations of the position and the shape
of the free surface. One result of that study is that the
k — w model modified for free-surface effects was found to
do well for various flows including cases with rough surfaces.
We use the same model in computing open channel flows
that involve large changes of the shape and the position of
the free surface both in the time-averaged and instantaneous
flows. Surface waves of large amplitudes induce strong local
acceleration and deceleration and the streamlines may have
large curvature, demanding flexible and generally applica-
ble turbulence models. The details of these rapidly varying
flows are not easily analyzed in practical engineering prob-
lems. We propose a method based on the Reynolds averaged
equation with the free surface represented by a single-valued
continuous function of the horizontal coordinates. There
are more elaborate methods that allow discontinuous and
even disperse interfaces that are being developed, but the
performance of the overall numerical method including the
turbulence models must first be examined with simpler but
sufficiently accurate methods such as the one used in the
present work. The test flows we consider are those over
a sudden drop and those over trenches with a wide range
of Froude numbers. These are the flows that have been
experimentally investigated by the latest Particle Image Ve-
locimetry (PIV) techniques and accurate data of mean and
turbulence quantities are available even in recirculating re-
gions.

EQUATIONS FOR FLUCTUATING FREE SURFACE

The definition and the representation of the moving in-
terface may be done in a few different ways. Elaborate
methods are needed for flows that involve a wildly mov-
ing interface with loquid drops dispersing or gas bubbles
entrained. However, for open-channel flows where fluid is as-
sumed only on one side of the interface, the orientation of the
free surface is nearly horizontal, and it can be conveniently
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represented it by its vertical position, z» = h(z1,z3,t),
where x;,x3 are the horizontal coordinates, z3 is the ver-
tical coordinate and h is the instantaneous height of the free
surface. With this notation, / satisfies the following equa-
tion:
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where 4; is the instantaneous velocity component in the z;
direction, |}"1 means the value at zo = h and the Greek in-
decies imply summation over the indecies for the horizontal
directions x; and z3 only. It is a kinematic equation requir-
ing that the fluid particles on the free surface stay on it. In
the method of calculation based on the Reynolds-averaged
equations, we solve for the averaged quantities within the
averaged flow domain. This means that the average posi-
tion of the free surface zo = H = h must also be solved by
taking the average of the equation for h. The average of the
nonlinear term on the left-hand side of this equation is like
a Lagrangian correlation since the position of the velocity
component %o moves with the free surface. In our compu-
tation with Eulerian variables we approximate as follows
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where h = h — H, Uy = Go and ua = iia — Ua. The second
term on the right hand side in the first line is dropped since it
is zero or very close to zero on the shear-free surface. Using
this, the Reynolds average of Eq.(1) becomes
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It is noted that in this equation that the term containing
the correlation between the fluctuating velocity component
and the fluctuating depth of the free surface appears. This
term is a contribution of the surface fluctuation to the net
mean mass flux. It has been found experimentally (Nezu
& Nakayama, 1998) that the correlation between velocity
components and the surface position are nonzero in fully de-
veloped open channel flow and in noniform flows its stream-
wise gradient can have nonzero values. Similar equation has
been used by Hodges & Street(1999) in the LES calculation
of flows with nonlinear waves.

Generally the above correlation terms need to be directly
modeled or calculated by a modeled transport eqaution. One
way is to first calculate the magnitude of the surface fluctu-
ation k2. Its transport equation can be obtained in a similar
way as that for turbulent kinetic energy and the results is
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The equations for the velocity-elevation correlations may
be used and can be derived but it is too much a complication
as the present stage without a definite need for it.

TURBULENCE MODEL

The test calculations by the present authors using various
two-equation models in calculation of various open-channel
flows indicated that the low-Reynolds number k& — w model
worked uniformly for a few test flows with small variations of
the free surface. It is a two-equation model with the linear

eddy viscosity whose defficiency is that the Reynolds nor-
mal stresses that become important in flows with complex
mean-flow strain field are not well represented. Also the his-
tory and nonlocal effects that most turbulence has are not
accounted for. The most important aspect is that the free
surface acts as a turbulence damper. It is stronger for low
Froude number but is weaker as the free surface looses regid-
ity as the Froude number increases. In view of this damping
effects of the free surface, we use the eddy viscosity v as
given by the original £ — w model but it is modified near
the free surface to account for the damping effects as the
amplitude of the free surface fluctuation as a parameter

14 :a*fsf (5)

where a* is the parameter used in the original k£ —w model,
and fs is a damping factor effective only near the free sur-
face. Y y

fs=1—exp (—Ch L_s) ecp (~Ch L_s) (6)
where h’ is the RMS fluctuation of h, 3’ is the vertical dis-
tance from the free surface, Lg is the turbulent length scale
at the mean free surface defined in the present work by

L =075k % Jws (1)
where kg and wg are the values of k and w at zo = H. A/
in a fully-developed flow is a function of the Froude num-
ber. It is based on the experimental observation and the
examination of the DNS data that the eddy viscosity and
turbulence production are reduced near the free surface over
distances scaled by the turbulent scale, and that the degree
of damping is more for small Froud numbers with smaller
fluctuation A'.

It has been estimated by Borue et al.(1995) but it is
much smaller than experiments of Nezu & Nakayama(2001)
or Direct Nymerical Simulation (DNS) of Nakayama & Yoko-
jima(2001b). We use a relation based on these measurements

and DNS data ,
h Usvk
— = pp225YES (8)
H U2,
where the subscript S is used for the values on the free sur-
face, and Fr is defined by the mean velocity U,, and the
mean depth H.

In the general case of spacially varying flows, A’ must be
computed via Eq.(4). Here we show a method of modeling
the terms in this equation. The correlations between veloity
components and the surface fluctuation appearing may be
done by a gradient-diffusion type model, as has been done
by Shen & Yue (2001) in a large-eddy simulation. Based on
this we have !
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where 051 and o9 are constant, presently set equal to 1.
The last two terms involving the gradients in the vertical
direction may be modeled by the concept of relaxation from
the fully-developed equilibrium flow so that we have
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Figure 1: Mean velocity profiles in subcritical flow over
backward-facing step compared with experiment. o; calcu-
lation; X; experiment(Nakagawa & Nezu (1982)
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where C. is additional model constant, also presently set
equal to 1 and 75 is the time constant at the free surface
and is 1/Cuws.

NUMERICAL METHOD

All transport equations are solved in time-developing
form by starting computation from an assumed initial state.
This allows calculation of possible unsteadiness of the real
flow that is of larger time scale than that of turbulence. This
is important in the present calculation of high-speed flows in
which generally large surface waves are generated if motion
is started from a horizontal free surface which needs to be
calculated in time-advancing manner.

The variables are descretized using the staggered grid
arranged on the rectangular coordinates. The free surface
position H is defined at the center of the vertical grid-
lines. Time advancement for all velocity components, the
free surface position H, k and w are done by the second-
order Adams-Bashforth method, in which the viscous and
turbulence terms are evaluated by the second-order central
difference formula and the convective terms are calculated
using the third-order upwind differencing scheme. H is cal-
culated assuming that the mean velocities are known at the
new time step. Calculation of A2 is done with velocities and
H all known. The pressure is calculated by the HSMAC
procedure of simultaneously correcting the velocity compo-
nents and the pressure. The boundary condition for pressure
is not needed in the HSMAC procedure, and the Dirichlet
condition for pressure at the free surface is enforced by set-
ting the pressure at the points closest to the free surface to
be equal to the hydrostatic pressure there. The method is
similar to the one used by Nakayama & Yokojima(2003).

CALCULATION RESULTS

Subcritical flow over backward-facing step

The calculation method is first applied to a low Froude-
number subcritical flow over a backward- facing step. The
step height Hg is about 1/4 of the flow depth at the step.
This flow is very close to internal flow past a step in a chan-
nel with small change in the surface elevation making it very
close to horizontal. For this flow, Nakagawa & Nezu(1982)
made an accurate measurement of the free surface and the
calculation results for it can be verified. Fig.1 shows the cal-
culation results of the mean velocity distribution compared
with the measurement. The results are normalized by the
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Figure 2: Free surface elevation increment, AH downstream
of backward-facing step. o; calculation; x; experiment (Nak-
agawa & Nezu(1982)
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Figure 3: Computed mean streamlins in high-Froude-
number flow over a backward-facing step.
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Figure 4: Free surface elevation and surface fluctuation in
High-Froude number flow over a backward-facing step.

maximum velocity Upmqz at the step. It is seen that the cal-
culation is in good agreement with the measurement. Fig.2
is a comparison of the free surface elevation represented as
the difference AH from the elevation at the position of the
step. The calculation tends to be slightly larger than the
measurements, but the magnitudes are too small to make a
definite statement.

A larger Froude-number flow in which the free surface
varies by larger magnitudes has been measured by Tomi-
naga et al.(1994). The step height is more than 1/2 of the
flow depth at the step and in this case the flow accelerates
just downstream of the step and the free surface dipps a lit-
tle then increases like a weak hydraulic jump. There is a
unsteady free-surface fluctuation in this region. The present
method has also been applied to this flow. Fig.3 shows the
mean flow calculation results in terms of the streamlines.
The reattachment point reported by Tominaga et al.(1994)
is at about z1/Hg = 10 and the calculation result is very
close to it. The detailes of the free surface elevation and
the intensity of the fluctuation is shown in Fig.4. H agrees
very well except the sharp free surface rise near the reat-
tachment point is calculated slightly milder. There is no
quantitative data of the free-surface fluctuation, but Tom-



Table 1: Parameters for flow over stepped slope.

discharge Q (1/s) 13.0

depth midpoint between steps Hi(cm) 2.9
Re=UnHi /v 32500

Fry =Un/v9H1 2.10

mean velocity Un, (cm/s) 11.2
maximum Upaz (cm/s) 120.0

step height Hg (cm) 1.0

inaga et al.(1994) comments that the flucuation was large
near the reattachment point. The present calculation shows
this trend also.

Supercritical flow past stepped slope

Figure 5: Mean velocity profiles and the free-surface eleva-
tion in stepped slope flow.
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Figure 6: Turbulent kinetic energy distribution in stepped
slope flow.

Next calculation case is a high-speed supercritical flow.
Recently Ohmoto et al.(2001) made measurements using the
PIV technique in a supercritical flow over a series of steps.
The ratio of the step height Hg to the horizontal channel
distance is 1/100 and there are ten steps in the experimen-
tal channel. The flow is steady and around the last few
steps the flow could be considered fully developped and pe-
riodic with respect to the length between consecutive steps.
The experimental conditions are shown in Table 1. The
Reynolds number Re and the Froude number F'ry are de-
fined by the cross sectional mean velocity Um and the mean
depth Hj at a position between two steps. The measure-
ments are made around the step that is located near the

Table 2: Parameters for flow over a drop with a trench.

discharge Q (1/s) 0.00227
Re = UnHi /v 7590
Fri=Un/VvVgHL 0.889
unstream mean velocity Um (cm/s) 38.9
step height Hg (cm) 2.0
depth of trench Hy (cm) 2.0
length of trench L (cm) 6.0
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Figure 7: Sckematic of flow over a drop with a trench.

end of the channel and the flow over this step may be con-
sidered fully developed and is nearly periodic except for the
head drop of lem over one step. Calculation is done from
50 step heights upstream and 50 step heights downstream
of the step. A fully-developed uniform-flow profiles for the
velocity and equilibrium profiles for k and w at the inflow
plane, and horizontal free surface were assumed initially. Af-
ter the large waves generated by the initial stage of the flow
development have translated past the downstream bound-
ary, the profiles at the downstream end are equated to the
inflow profiles assuming periodicity with the period equal to
the distance between the steps.

Fig.5 shows the profiles of the mean streamwise velocity
component together with the free-surface elevation after the
steady-state has been reached. First, the free-surface posi-
tion and the shape are very well predicted by the present
method. The velocity profiles appear a little off the experi-
mental profiles but it is seen to be due to a slight shift at the
step edge where the optical measurement may be influenced
by the step itself. The reattachment point is predicted very
well as well.

Fig.6 is a comparison of turbulent kinetic energy dis-
tribution. Here we see that the calculation underpredicts
considerably downstream of the step. Particularly the shear
layer coming off the step corner is seen to spread below the
step while the measurement indicates larger spread above
it. Some erratic-looking values near the surface is not also
predicted.

Flow over a drop with trench

The next case is a low over a drop with a trench at the
bottom of the drop measured by Fujita & Maruyama (2001).
Skematic of this flow is shown in Fig.7. This is a new type
of falling work that is proposed to implement in steep sloped
channels running in urban areas located in a hilly region. It
will work as an energy dissipater and at the same time will
provide a better aquatic space. It has been found experi-
mentally that depending on the ratio of the length to depth
of the trench, the flow can be very different and can exhibit
distinctively periodic nature. In the computation we take
the case in which the free surface deforms significantly but
the unsteadiness does not set in. The experimental condi-
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Pigure 8: Sckematic of flow over a drop with a trench.
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Figure 9: Sckematic of flow over a drop with a trench.

tion is shown in Table 2. Since the test flume has sufficient
length before the drop where measurements are taken, the
flow approaching the drop is assumed to be fully developed
in the calculation. The calculation is conducted for the re-
gion from 90Hg upstream to 105Hs downstream from the
drop.

In this case, the flow developes to almost the uniform
flow at the position of the drop. Therefore, in this case also
the inflow is self generated. The calculated mean velocity
distribution is compared with the experiments in Fig.8. It
is seen that the overall pattern of the flow is computed very
well. The main difference is in the flow over the downstream
step. The calculated flow here shows small back flow some-
what downstream of the step, while the experiment shows a
strong back flow right at the corner. One reason for this is
the difference in the flow depth at the top of the upstream
step. In the calculation the depth is larger and hence the sep-

arated flow does not drop as much and the bulk of the flow
reattaches on the downstream channel just past the trench.
The main flow running off the step in the measurements,
however, impinges on the upper corner of the forward step
that cause a second separation.

The turbulent kinetic energy distribution is compared
in Fig.9. Here only the distribution is shown by the dark-
ness of the shades. Again the overall pattern is seen to be
well predicted, but the magnitudes and detailed distribu-
tion do not agree well with the measurement. It has been
stressed that the free surface has damping effects that can-
not be neglected. Here we have a free surface that rises
and falls sharply causing strong acceleration and decelera-
tion along with large streamline curvature. These distortions
are largely due to an irrotational wave motion. The eddy-
viscosity models are known to predict incorrect turbulence
production in an irrotational strain field. This calculation
case demonstrates importance of modeling of this aspect.
For further improvements, the effects of the fluctuation of
the free surface should be treated in more direct way. The
transport equation for the second-order correlation terms
should then be modeled. The surface fluctuation has not
been computed for this case, in which the changes are too
large to make adequate calculation with the present equation
for h2.

CONCLUSIONS

Computation of turbulent flows with free-surface fluctu-
ations has been done within the framework of the Reynolds-
averaged equations of motion and the continuity equation.
The mean position of the free surface may be either steady
or chaging slowly but the instantaneous position is assumed
fluctuating in space and time. The computation of the
flow in changing flow domain in the framework of Eulerian
Reynolds-averadged equations requires a special treatment
as to the Eulerian averages as well as computation of the
moving boundary. A method of computing the time av-
erage and the amplitude of fluctuation of the free-surface
position had been presented and used to compute various
turbulent open channel flows including rapidly varying flows.
The basic turbulence model used is built around the widely
used k — w two equation turbulence modeling. Calculations
results indicate generally good, particularly the high-speed
flows that have not hitherto been computed well with differ-
ential methods are well predicted.

While a lack of accurate data of the free-surface position
and fluctuation amplitude prevented detailed evaluation of
the calculation of the free-surface fluctuations, but they can
be made as experimental data and DNS data become avail-
able.
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