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ABSTRACT

The paper is devoted to the derivation of an Explicit
Algebraic Stress Model sensitized to the nonlocal blocking
effect of the wall through elliptic relaxation. The model is
based on the Elliptic Blending Model (Manceau and Han-
jali¢, 2002), which is projected on a three-term tensorial
basis, leading to a three equation transport model (k——a),
where a is the elliptic blending function. The model is able
to reproduce the two-component limit of turbulence and,
in particular, the crucial limiting value of the wall-normal
anisotropy bgy = —% at the wall. The model is shown to
perform very well in channel flows at different Reynolds
numbers. A comparison with the full Reynolds stress model
with elliptic relaxation (13 differential equations) highlights
the interest of the approach.

INTRODUCTION

The recent development of Reynolds stress modelling
valid down to solid boundaries has led to models able to
reproduce the crucial two-component limit of turbulence
in the near-wall region without wall or damping functions:
however, the degree of complexity of these models, due to
highly nonlinear terms (Craft and Launder, 1996) or addi-
tional equations (Durbin, 1993), prevents the spreading of
these models into industrial codes.

The purpose of the present work is to derive a model
as simple as possible while keeping a realistic representa-
tion of the physics, and, in particular, of the wall-blocking
effect. The method consists in starting from a model with
firm theoretical foundations, the SSG Reynolds stress model
(Speziale et al., 1991), extended to near-wall regions via the
elliptic relaxation strategy (Durbin, 1993) and using inher-
ent properties of the model and mathematical methods in
order to reduce the number of equations with a minimum
number of hypotheses.

In a first step (Manceau and Hanjali¢, 2002), the full
model, which contains 13 equations (6 transport equations
for the Reynolds stresses, 1 transport equation for the dissi-
pation rate and 6 elliptic relaxation equations accounting for
the wall-blocking effect) was reduced to a 8—equation model,
the Elliptic Blending Model. Indeed, the 6 elliptic relaxation
equations of Durbin’s model are exactly of the same form
and produce the same relaxation effect, linked to the geom-
etry of the domain, on each of the Reynolds stresses: the
selective blocking effect is only imposed via different bound-
ary conditions. In the Elliptic Blending Model, the same
effect is produced by a single elliptic relaxation equation for
a geometrical blending function a, which enables a transition
from the standard SSG model far from the wall to a near-

wall redistribution model: the model distinguishes among
the different Reynolds stress components through the gradi-
ent of the blending function «. The Elliptic Blending Model
preserves the good properties of the full model (non-locality,
near-wall anisotropy representation), and was successfully
applied to shear (Manceau and Hanjali¢, 2002) and imping-
ing flows (Thielen et al., 2001).

The present work is a further attempt to reach the lowest
possible degree of complexity while preserving the physics:
the well-known tensor representation theory is used to derive
an Explicit Algebraic Stress Model (EASM) (Pope, 1975).
The method and the notation follow the paper of Rumsey et
al. (2000). This results in a model that only consists of
3 transport equations (k—e—a), but resolves the Reynolds
stress anisotropy in all the domain, including the near-wall
region.

BACKGROUND MODEL

The Elliptic Blending Model (EBM), described in
Manceau and Hanjali¢ (2002), is derived in order to con-
tain as much physics as possible: it is, similarly to the SSG
model, linear with respect to the mean velocity gradient,
quadratic with respect to the anisotropy tensor b;;, and de-
pends on the invariants of b;; through:

e the coefficient (g3 — g3 vbribg:) in front of the term
kS;;

e the blending function Aka used for the dissipation ten-
sor, where A is Lumley’s flatness parameter.

In the frame of Explicit Algebraic modelling, it is much eas-
ier to work with a fully linear model. Therefore, a slightly
different version of the EBM is used here.

e Firstly, the tensorial nonlinear term is simply sup-
pressed by choosing g2 = 0: this term, although neces-
sary to reproduce the return to isotropy problem, is of
minor importance in general situations.

e Secondly, the blending functions used to impose a tran-
sition to near-wall forms of the redistribution (¢;;) and
dissipation (£;;) tensors are both taken as o?, instead
of ka and Aka, respectively. The elliptic relaxation
equation then reduces to:

a—-LV3a=1 (1)

This modification has the virtue of suppressing the
numerical instability due to the nonlinearity of the flat-
ness parameter A and the tendency of the blending
functions to go to values different from 1 far from the
wall.



¢ Thirdly, the term (g3 — g3 vbribr:i) kSi; requires a spe-
cial treatment. Indeed, it plays a significant role in the
near-wall region via the sharp increase of v/bg;bg;. The
same behaviour can be reproduced by using v1 — a2
in lieu of +/bgby;. However, this modification is
not consistent with rapid distortion theory, which re-
"quires this coefficient to go to g3 = % in the limit of
initially isotropic turbulence subjected to rapid dis-
tortion. Therefore, the term (93 — g3 vbribri)kSij
is kept unchanged in the version of the EBM used
for comparison in the present paper, but replaced by
(93 —g3v1-— a?) in the derivation of the Explicit Al-
gebraic Model: the latter model will not be able to
reproduce rapid distortion, but it is anyway the case
because of the hypothesis 8b;; /0t = 0. Note that in
Rumsey et al. (2000) model, this term was simply
suppressed (g3 = 0).

The only remaining nonlinearity in the model comes from
the term g} Pb;;, since P = —2by; Sy k, but this term is kept
unchanged, for two reasons: firstly, it is crucial to sensitize
the model to departures from the equilibrium value P/e = 1,
and, above all, this nonlinearity cannot be avoided in the Ex-
plicit Algebraic methodology, since the product 7;; P enters
the anisotropy transport equation (see Eq. 3). The present,
linearized version of the EBM is given extensively in the
Appendix.

DERIVATION OF THE EXPLICIT ALGEBRAIC STRESS
MODEL

The algebraic methodology (Redi, 1976), consists in us-
ing the equilibrium hypothesis Db;;/Dt = 0 and in consid-
ering that the anisotropy of the diffusion tensor D;; is the
same as that of the Reynolds stress tensor 7;;:

Dij _ 7

—4 _ Y 2
Dyxr ik @
leading to the algebraic relation:
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In order to simplify the equations, a notation similar to
the one used by Rumsey et al. (2000) is introduced:
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In Rumsey et al. (2000), only a4 was not a constant, while
in Eq. (4), all the coefficients depend on «, which goes
from zero at the wall to one far from the wall. This (im-
plicit) dependence on the distance to the wall is at the origin
of the transition from the standard SSG model (recovered
asymptotically when a — 1) to the near-wall model (a — 0),
accounting for the wall-blocking effect.

The EBM involves the vector m defined as
n = Va/|[Va|. Since the wall is the isosurface a =0, n

A

gives the wall-normal direction at the wall, but is also well
defined in the remaining of the domain. It is convenient
to introduce the “wall-normal tensor” IN defined by
Njj = nin; and its deviatoric part M = N — %I, where I
is the identity tensor. The trace of a tensor A is denoted by
{A}. S and W are the mean strain rate and mean rotation
rate tensors, respectively.
Introducing the EBM in Eq. (3) yields:

2
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Again, the wall-blocking effect enters Eq. (5) when o <1,
through the variations of the coefficients, in particular by
activating the terms in a5 that involve the wall-normal ten-
sor M. Equation (5) reduces to the algebraic form of the
SSG model (see, e.g., Rumsey et al., 2000) when o = 1.

In order to find an explicit solution of Eq. (5), a Galerkin
projection is used. It is easy to show that in two-dimensional
flows, the anisotropy temsor b is an element of a three-
dimensional space. A usual basis of this space is made of
the three tensors:

T,=8
Ty=SW -WS§ (6)
T3 =82 - %{52}1

such that b can be written:
3
b=> arTs (7
n=1
The Galerkin projection consists in introducing the de-

composition (7) into Eq. (5) and projecting the equation on
the basis tensor Ty, which yields:
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Defining the invariants:
n=1+/{5?}
ne | 7
=\~ 2
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Q =2{SWM}
the following matricial relation is obtained:
AX =Y (10)
where X; = o; and A is the 3 x 3 matrix:
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Y is given by:

Y = o) (12)

Again, it is worth pointing out that A and Y reduce to
the ones found by Rumsey et al. (2000) when the blending
function a goes to 1. Therefore, it is clear that the wall-
blocking effect enters the problem through the variation with
a of the coefficients a;, which, in particular, turns on the
terms in a5 in Eq. (11) and Eq. (12). The main difference
with Rumsey et al.’s (2000) model is thus the appearance of
two new invariants, P and Q. The model is thus dependent
on 4 invariants, defined by Eq. (9), which represent different
physical mechanisms:

e 7 simply characterizes the mean strain. It reduces to
n= ﬁc’)U/By in a channel flow.

e R is merely the mean kinematic vorticity number
of Truesdell (1953). It is a pointwise measure-
ment of the “quality” of mean rotation: it is linked
with Q = 2(||[W?2|| —{|82||), the second invariant of
the mean velocity gradient (not to be confused with
Q =2 {SWM} used in the present paper), by the rela-
tion Q = $(R? — 1) . Since Q is the first component
of the mean pressure Laplacian (the second component
being the mean contribution of the fluctuating field),
R > 1 identifies regions where the mean flow tends to
reduce the mean pressure, which are the regions where
the mean flow rotates. R =0 and R =1 correspond
to plane strain and pure shear regions, respectively.
Obviously, R = 1 in a channel flow.

e P={SM} is a new invariant indicative of the rela-
tive orientation of the principal axes of the mean strain
tensor and of the “wall-normal” tensor. It is defined
everywhere in the domain and is sensitive to the pres-
ence of all solid boundaries. When a plane wall is
approached, it goes to:

»_ OUa

= oo (13)

where the subscript n denotes the wall-normal com-
ponent (of course, no summation on n). P?/n? can
be called the impingement invariant, since it reaches
its maximum value P?/n? = 2/3 at axisymmetric im-
pingement points (e.g., in the case of an axisymmetric
jet impinging on a flat plate) and its minimum value
P2/n? = 0 when the flow is parallel to the wall (e.g.,
in a channel flow).

* OQ=2{SWM} is also a new invariant, which, simi-
larly to P, characterizes the orientation of the velocity
gradients compared to the “wall normal” direction.
Close to a plane wall, it reduces to

1 2 2 2 2
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where n denotes again the wall-normal component, and
t1 and ty the two components tangential to the wall.
Equation (14) shows that Q is high when the shear is
oriented like in a developed boundary layer. Q is not,
sensitive to plane strain. Therefore, Q/n?, which is
between —1 and 1, is an invariant that characterizes

the resemblance of the local mean flow to a fully de-
veloped boundary layer. It can be called the boundary
layer invariant. Using both P2 /n? and Q/n? helps the
identification of the local flow structure in the vicinity
of a wall, since their values are known for typical flow
configurations above flat plates:

Boundary layer PZ/p? 0 Q% o1
Channel flow P2 =0 o/’ =1
Axisymmetric impingement point P2/ =2/3 Q/p? =0
2D impingement point P2 =1/2 Q/n*=0

Thus, the selective influence of the blocking effect will be
driven in the model by the values of P and Q.

The projection coefficients ar of the anisotropy tensor b
are given by:

X=A"1y (15)
which can be easily evaluated by a symbolic calculator:
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The residual nonlinearity of the model, quoted in the pre-
vious section, only appears in the equation for a, since a4 is
a function of a1, through the ratio production/dissipation:

P_ ~2{b8}7 = —20a79>T 17)
€

It would be possible to consider the ratio P/e as constant,
similarly to what was done initially by Gatski and Speziale
(1993), but further studies (Ying and Canuto, 1996; Giri-
maji, 1996; Jongen et al., 1998} suggest that using Eq. (17)
greatly improves the predictions.

Since in Eq. (16), the a; equation involves a43, and a4
is in @11, this equation is quartic in aj. Therefore, it is
necessary to solve the following quartic algebraic expression
for ay:

Baal + B3af + Baaf + Bron + B0 =0 (18)

The coefficients 8, are given in the appendix.
The selection of the proper root for this equation is not
an issue in the present paper, since only a channel flow will



be computed: in that case, Eq. (7) reduces to:
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Since 7 = 1/4/2 8U/dy, it is clear that —ka plays the role of
an eddy-viscosity. Therefore, o is expected to be negative.
Now, a study (not given here) of the solutions of Eq. (18) at
many different locations in a channel gave always the same
picture: one solution is negative, one solution is positive and
the two other solutions are complex. Therefore, Eq. (18) was
simply solved by Newton’s method initiated with the value
—0.09k /e, which always gave a negative solution.

Once the value of a3 is known, a2 and a3 can be simply
evaluated using Eq. (16). The anisotropy tensor b and, ipso
facto, the Reynolds stresses are then obtained by Eq. (7).

This algebraic formulation is solved with 3 differential
equations for k, ¢ and a (the elliptic blending function).
The complete set of equations is given in the appendix. It
is worth noting that, contrary to Rumsey et al.’s model,
Durbin’s (1993) form of the ¢ equation is used, which con-
sists in bounding the turbulent time scale k/e by the Kol-
mogorov time scale. Another difference to be pointed out
concerns the turbulent diffusion terms in the transport equa-
tions for k and e: while Rumsey et al. used an equilibrium
eddy-viscosity v; = C,k? /e, the k—e—a model uses the Daly—
Harlow (1970) model (see the appendix). In a channel flow,
the Daly-Harlow model is equivalent to an eddy-viscosity
model in which vy = C“;'Zk /&, which highlights some simi-
larity between the present k—e—o model and the v2—f model
(Durbin, 1991). However, the k~e—a model has many virtues
compared to the v2—f model: it resolves all the anisotropies;
it does not rely upon the controversial definition of the scalar
“v—z”; it derives from the SSG model, which is more elaborate
than the Rotta+IP model used in the 2 f; the boundary
condition for the function driving the blocking effect is sim-
ply @ =0, to be compared to f = —201/211_2/5y4, which is
known for leading to numerical difficulties in the V2 f model.

LIMITING BEHAVIOR OF THE ANISOTROPIES

The different roles in a channel flow of the three projec-
tion coefficient clearly appear in Eq. (19). a1, which is the
weight of the tensor S in b, only drives the shear stress.
as drives the spanwise anisotropy and as differentiates ba2
from bn .

In the vicinity of the wall, a study (not given here) of the
limiting form of Eq. (18) shows that the only solution at the
wall is a1 = 0.

Similarly, it is easy to show that az — —1/(4n?) and
a3z = —1/(2n?). These values of the coefficients lead to the
limiting form of the anisotropy tensor in the vicinity of the

wall:
10 ~1 0 0 ,[ 100
00 [4am?| 0 1 0 +aa—1% 010
00 000 0 0-2

/6 0 0

= [ 0 -1/3 0 }

0 0 1/6
(20)
The crucial two-component limit of turbulence is thus re-
produced, since Eq. (20) shows that v2 < u? and v? € w?.
Note that DNS in a channel does not give by1 = b3z, but this
feature of the model allows the reproduction of the rapid
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Figure 1: Comparison of the k—e~a model with the model
of Rumsey et al. (2000). Symbols: DNS at Rer = 590
(Moser et al., 1999); ——— Rumsey et al. model; k-
e-a model. (a) Anisotropies; (b) Reynolds stresses; (c)
Blending function a? (d) Reynolds stresses in log-log scale.
(O 1ll-component; [0 22-component; /A 33-component;
% 12-component).

change of b11 and bss in the vicinity of the wall shown in
Fig. 1la.

CHANNEL FLOW RESULTS

Fig. 1 shows the predictions of the k—e—a model com-
pared to the model of Rumsey et al. (2000), which is the
same model without the blocking effect of the wall. It is clear
that, far from the wall, the two models give the same solu-
tion. The interest of introducing the blocking effect of the
wall appears in Fig. 1: the SSG model, and consequently
its algebraic version, is indeed able to reproduce correctly
the anisotropies in the upper part of the log layer, but not
their rapid variations below yT = 100, which are due to the
kinematic blocking of the wall. This effect is driven in the k-
e—a model by the value of the blending function o2, shown
in Fig. l1c. In the vicinity of the wall, o — 0, which forces
the anisotropy to the limiting form (20): it is seen in Fig. 1a
that the wall-normal component of the anisotropy tensor in-
deed goes to —1/3 at the wall, which is the signature of



Figure 2: Comparison of the k-e-a model (3 equations)
with its underlying Reynolds stress model (Elliptic Blending
Model, 8 equations). Symbols: DNS at Re, = 590 (Moser et
al., 1999) (O w?; O v3; A w?; % ww.) ; ——— EBM;
k~e—a model.
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Figure 3: Comparison between the full Reynolds stress
model of Durbin (1993) (13 equations) and the k—e~a model
(3 equations). Symbols: DNS at Re, = 590 (Moser et al.,
1999) (O u?; O v%; A w?; * wW.) ——— Durbin’s model.
—— k—e—a model.

the two-component limit of turbulence. Moreover, v2 is not
only negligible compared to u2 and w?: it is seen in Fig. 1d
that the limiting behaviour v2 = O(y*) is obtained, which
validates the correct reproduction of the wall-blocking.

Fig. 2 shows a comparison between the k~c—a model and
its underlying Reynolds-stress model, the Elliptic Blending
Model (EBM). The predicted Reynolds stresses are very
similar, which shows that the explicit algebraic methodol-
ogy is almost “non intrusive” in the case of a channel flow.
Indeed, during the derivation of the model, the only hy-
pothesis that was used and is not strictly valid in a channel
flow is Eq. (2). The main consequence is the wrong predic-
tion of the anisotropy in the centre of the channel: indeed,
when the mean velocity gradient approaches zero, the diffu-
sion terms become dominant in the budgets of the Reynolds
stresses and do not conform to Eq. (2). Relating diffusion
to the anisotropy tensor b leads to a fully linear model when
P — 0. Therefore, at the centre of the channel, Eq. (3)
reduces to a balance between slow redistribution and dissipa-
tion: —g1b/27 + b/7 = 0: the only solution to this equation
is of course b;; = 0. Note that using the nonlinear slow term
of the original SSG model (g2 term) would lead to the same
result.

Fig. 3 illustrates the interest of the present approach.
Durbin’s (1993) model (rescaled version of Manceau et al.,
2002), consists of 13 closure equations: 1 for the dissipation
rate, 6 for the Reynolds stresses and 6 elliptic relaxation
equations. By reducing the number of elliptic relaxation

1000

Figure 4: Mean velocity profiles predicted by the k—e—
a model at different Reynolds numbers. Symbols: DNS
(Moser et al., 1999) at O Rer =180, O Re, = 395,

A Rer = 590; —— k—e—~a model.
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Figure 5: Variation of the friction coefficient C; with
Reynolds number. O DNS (Moser et al., 1999); O Ellip-
tic Blending Model; A k—e-a model.

equations to 1 (Elliptic Blending Model) and applying the
explicit algebraic methodology, the number of differential
equations is reduced to 3 (k-e—a). Fig. 3 shows that the
reproduction of the near-wall anisotropy is not spoiled.

Fig. 4 shows the excellent predictions of the mean ve-
locity profiles at different Reynolds numbers. Consequently,
the variation of the friction coefficient C'y with the Reynolds
number, shown in Fig. 5, is very well reproduced. The re-
sults shown in Figs. 3, 4 and 5 are of considerable interest
in the frame of industrial applications for which the compu-
tational cost, but also the reproduction of the physics, are
crucial issues.

CONCLUSION

The theoretical analyses and the channel flow results
given in this paper are very encouraging for the ability of the
new Explicit Algebraic Stress Model, the k—e—a model, to
reproduce the turbulence anisotropy is more complex config-
urations. Indeed, the underlying redistribution model (SSG)
is known for giving satisfactory results in many situations
and Rumsey et al. (2000) showed that the explicit algebraic
version of the SSG (with a variable P/¢), is able to reproduce
the flow in a strongly curved U-duct. The present work is an
extension of their work in order to account for the blocking
effect of the wall: the new model was shown to reproduce
the two-component limit of turbulence in a channel flow.
The methodology, based on elliptic blending and tensorial
representation, is valid for any 2D flow. The appearance
in the near-wall region of terms involving invariants (P and
Q) sensitive to the orientation of the mean velocity gradi-



ent with respect to the wall indicates that the model is not
only suited to particular flow configurations: the kinematic
blocking of the wall will adapt itself to the situation and
is expected to modify the redistribution processes such a
way that the two-component limit of turbulence is always
reached at the wall. While theoretical and numerical results
show that it is indeed the case in a channel flow, further
work is needed to confirm this favourable behaviour in other
configurations. In particular, the use of a three-term basis
and simplifications of the invariants using a 2D hypothesis
will require some precautions in order to apply the model to
3D configurations.
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APPENDIX

Linearized Elliptic Blending Model:
$i5 = (1= a®) 935 + @”0l; (21)
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New Explicit Algebraic Stress Model (k—c—c):
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ay: see Egs. (34) and (35); a2 and «a3: see Eq. (16)
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Bo=3T1 [Sastf(3a171+a,a57—2a3a57)
+R2 47 [—36am’n“+4as’7’r’
+3asm (—G‘P’n+(6a2Q+(u1+2aa) *) r)
+as®7 (6P + (~1262 @+ (501 +2a3) n°) r)]]

B =182 R*¢° 7 (-1271 4 5a57)
+3a5 Q%7 [971’ +6asm T+ (as’ -6 (a,2 +3a; 70) 7,2) 1'2}

+R%p? | — 108 12+ 27as 72 (27’2 - n"‘) T

4187 (6asP (as+210) n° +4 (a32+6a170) 0+ a5? (2P’+n’)) 2

o [36“”’(as—7o) 7 +as? (67 +507)

~6 (1302 Qo+ (—4a3’+3al A,o+6a870) ﬂ‘)] Ts]
Bo=180a22 R*1® 72 (=127, + 5a57) + 3 a5 o r [97124_6“57“_

+ (052 -6 (a:.x2 +3a; 70) ,72) ,,2] FR2 [_ 1087 o2

+27asm1® (2‘;)2_"2) T+ 1891 (6057’(413+270) »

+4 (a32+6a1 ‘Yo) 7% + as? (2‘Pz+n2)) 2+ a5 [3605'P (a3 — 70) 7*
2 2 2 2 2 4 3
+as (G‘P +5n)—6 (184242'7071 +(—4aa +3a170+6a370)n)] T]

Ba =108 vo2 7% 72 [as Q*r—R? (1271 n* +asn’ (—2 P? +n’) T)]
Ba=864R% 707" 7°
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