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ABSTRACT

Characteristics of 3D turbulent flow features around
inclined submerged spur dikes are numerically
investigated using a non-linear k-¢ model. A generalized
curvilinear movable coordinate is employed to calculate
the free surface oscillation and take into account the
complex topography. The computations were performed
under the conditions of the laboratory tests with PIV
measurements performed by Tominaga et al (2001).
Numerical results show that the amplitude of fluid
oscillation around downstream inclined spur dikes is much
larger than that around downstream inclined ones and the
period of the oscillation is in compatible with the first
mode of impinging shear layer.

INTRODUCTION

Spur dikes have been constructed in rivers to protect
riverbanks from erosion and maintain the routes for
navigation. Recently, the main role of the spur dikes is
changing, that is, spur dikes become to be focused as
structures for environmental functions, The sedimentation
around a submerged spur dike is closely affected by its
inclination angle. Therefore, it is important to clarify the
effects of the inclination angle on 3D flow structures
around the spur dikes.

In this study, characteristics of 3D turbulent flows
around the submerged spur dikes are numerically
investigated using a non-linear k-g model. A generalized
curvilinear movable coordinate is employed to simulate
the free surface oscillation and take into account the
complex topography. The computations were performed
under the conditions of the laboratory tests with PIV

measurements performed by Tominaga et al (2001). The
time-averaged and time-dependent flow features are
discussed through the comparison between the
computational and experimental results.

COMPUTATIONAL MODEL

Basic Equations

Basic equations with contravariant components of
velocity vectors on a generalized curvilinear movable
coordinate system are described as follows.
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“Table 1: Hydraulic conditions in the flow field. AR L 0 5 10 15 20 x(em)
Channel width ~ 03m,  Bed slope 1/2000 T ; y
Averaged depth  8.0cm,  Discharge 4.11Vs . ; ) me
Averaged velocity 17.1 cm/s, Froude number 0.193 : e
Reynolds number 13660,  Length of spur dikes 5.0 cm i
Width of spur dikes 2.0 cm,  Height of spur dikes 4.0 cm 191 i HH

Figure 1: Flow field and coordinate in the computation.

where &= generalized curvilinear coordinate, ¢ = time, v
= contravariant component of the velocity vector of flows,
W' = contravariant component of the velocity vector of
grid motion, p = pressure, v= molecular dynamic
viscosity, p = density of water, k = turbulent energy, £ =
turbulent energy dissipation rate, g; and g% = covariant and
contravatiant component of metric tensor, g = det(g;) and
F' = contravariant component of gravity acceleration. V'
indicates a covariant differential, for instance,

a4t

VA =24k 5
; o7 L (5)

where Fijk = Christoffel symbol described as
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Turbulence Model

To calculate a complex turbulent flow with separation
and vortex shedding, a 2nd-order non-linear k- model by
Kimura and Hosoda (2000) is adopted as a turbulence
model. This model has been applied to various flow fields
with the Cartesian coordinate, such as, a flow around a
square cylinder (Kimura and Hosoda, 1999), a flow around
a surface-mounted cube (Kimura and Hosoda, 2000) and a
compound open channel flow (Kimura et al, 2001). The
constitutive equations of the model are described as

T i 2. g K
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(c) Computation (Non-linear model).
Figure 3: Time-mean horizontal flow patterns in Run 2

(z=5mm).
0= '8, ~5 08, 2u0l8" (n
S =gV + gV (12)
QF =glov V' —g"v .y’ (13)

The model coefficients are given as functions of the
strain parameter S and the rotation parameter Q as follows.

a, =-01325f,,, a,=00675f,, a;=-00675f, (14)
7, :[1+0.02M2}‘, M =max[S,] (15)

C, =min[0.09,03/(1+0.09M*)] (16)
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Equations (14) and (15) were adjusted through the
consideration of the distribution of turbulent intensities in
a simple shear flow (Kimura and Hosoda, 2000). Equation
(16) was tuned to satisfy the realizability in 2D and 3D
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(a) Velocity vectors near the bed (z=5mm)

Dark region: flow into the inner part between
two spur dikes from the main channel

(b) Flow distribution in a vertical section at y=45mm.

Figure 4: Time-mean flow field in the numerical results with the non-linear k- model.

flows (Hosoda et al, 2001).

Outline of Numerical Method

The differential equations governing the mean-velocities
and the turbulence field are solved with the finite volume
method on full-staggered grid system. The metric tensor
and Cristoffel symbol are defined only at grid points to
save computer memory and the values at other positions
are interpolated at each computational step.

QUICK scheme is applied to the convection terms and
the central differencing is used for the diffusion terms in
the momentum equations. The hybrid central upwind
scheme is applied to the k£ and ¢ equations.
Adams-Bashforth scheme with second-order accuracy in
time is used for time integration in each equation. The
basic equations are discretized as fully explicit forms and
are solved successively along the time axis step by step.
The pressure field is solved using iterative procedure at
each time step (Hirt et al, 1975).

Boundary and Initial Conditions

The wall function approach is applied as the wall
boundary conditions for £ and . The wall friction is
evaluated by the log-law. At the downstream end, the
longitudinal gradients of all variables are assumed to be
zero. At the boundary inlet, the level of & is chosen to be
0.02U)? (Up= averaged velocity). The value of ¢ at the
inlet is determined from the value of k at the inlet and
Equation (8) by specifying the ratio D/v= 10 (Bosche and
Rodi, 1998).

The free surface elevation is solved by the simple
relation in  Equation (18) since the contravariant
components of the velocity vector are used in the basic
equations.

An=\g,,V At (18)

where At = time increment and Ah = surface elevation
during At. To consider the rapid attenuation of turbulent
intensities in the depth-wise direction near the free surface,
the eddy viscosity is multiplied by the following dumping
function (Hosoda, 1990).

L:I_exp{_B%&j , (B=10) (19)

5

where sub-s indicates the value at the surface layer. The
turbulent dissipation rate at the surface layer is evaluated
by the following formula proposed by Sugiyama et al
(1995) to calculate the secondary currents of 2nd kind.
Cﬂ03/4k53/2

o (C,o=0.09) (20)
At the beginning of the calculation, U (= velocity in
longitudinal direction) = U, (=averaged velocity), V (=
velocity in transverse direction) = 0, k = k;, and &= &, (k;,
and g, are the values of & and ¢ at the inlet boundary) are
specified over the whole computational domain.

Hydraulic Conditions and Computational Domain

The computations are performed under the same
conditions with the laboratory tests by Tominaga et al
(2001). The hydraulic conditions in the computations are
listed in Table 1. Two submerged spur dikes are placed at
the left side of the flume. Two cases with different
inclination angles, namely, upstream inclined (Run 1) and
downstream inclined (Run 2) spur dikes are considered.
The inclination angles with respect to the main flow
direction in Runs 1 and 2 are 120° and 60°, respectively.

Numerical grids in the x-y plane at the vicinity of spur
dikes in Runs 1 and 2 are shown together with the
coordinate system in Figures 2 and 3, respectively. These
grids are generated with the aid of the grid generator
“Rubbnet” developed by Chiba and Takemoto (1999). The
grid in vertical direction in each case is made by dividing
the depth into 8 equal lengths. The grid over the roof of the
spur dikes is moved in vertical direction according with
the surface elevation calculated by Equation (18) at each
time step. The number of grid points in each case becomes
104 (x-direction) x 30 (y-direction) x 8 (z-direction).

RESULTS AND DISCUSSIONS

Time-mean Flow Features

Since time-averaged flow features have been already
reported in detail (Kimura et al, 2002b), we made some
additional consideration focusing on the difference of
turbulence models.

We first consider the flow near the bed, which is
particularly important for sediment transport. Figure 3
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Figure 6: Temporal variation of velocity v at z=3.5c¢m at the interface (horizontal location are shown as @).
shows the horizontal flow patterns in Run 2 at z = 5 mm shows that, at the vicinity of bed, the flow from the inner
by the laboratory test and different turbulence models. The part between two spur dikes toward the main channel is
flow patterns by two models are surprisingly similar. The dominant around downstream inclined spur dikes, while
reattachment length downstream of the second spur dike the flow in the opposite direction is dominant around
by the standard model is slightly longer than that by the upstream inclined spur dikes.
non-linear model. The difference of the flow patterns in Figure 5 shows the dimensionless turbulence energy k’
Run 1 by two models is also very small. The simulated (=k/Ug?) in a horizontal plane at z = 35 mm and in a
flow patterns by both models are in good agreement with vertical plane at y = 45 mm. These figures show that the
the experimental result. Figure 4 shows the plane velocity value of k” around the spur dikes by the non-linear model
vectors near the bet and flow distributions in the vertical is smaller than that by the standard model. It has been
section at y = 45mm in the numerical results. This figure pointed out that the standard model excessively products
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Figure 7: Time-dependent plane flow patterns by the non-linear model at z=5Smm (left: velocity vector, right: depth).

the turbulence energy around the impinging region. In our
previous works, the non-linear mode! can correct the
shortcoming of the standard model to some extent. These
results demonstrate again the advantage of the present
non-linear model for the production of k around impinging
region.

Unsteady Flow Characteristics

Effects of Inclination Angle on Unsteady Flow
Features. Figure 6 shows the comparison of temporal
velocity variations in y-direction between the experimental
and numerical results. The locations of measured points
are indicated in the diagrams as solid circles. In the
experiment of Run 1, the flow is almost stable although
slight fluctuation with small amplitude can be seen. The
numerical results in Run 1 yield almost constant value
regardless of the order of turbulence models. On the other
hand, flow fluctuation can be seen in the experimental
result in Run 2 and the period of the oscillation is not
constant but variable from 0.5 to 2.0 sec. In the numerical
results in Run 2, quite periodic oscillations are reproduced
by both turbulence models. The periods in two models are
same and are 1.3 sec. The amplitude of the oscillation by
the non-linear model is a little larger than that by the
standard model.

Figure 7 shows the velocity vectors at z = 5Smm and the
water surface level distributions in the numerical result at t
=90.4, 90.9, 91.4 sec. The vortex shedding from the tip of
the first spur dike is numerically generated. The period of
the vortex shedding is about 1.3 sec and is in agreement
with the period of the velocity variation in Figure 6. The
water level becomes local minimum around the center part

of the vortex though the amplitude of the free surface
oscillation is small.

Figure 8 shows the velocity vectors in the vertical plane
at y = -50mm by the non-linear k- model. Intermittent
upward flows can be seen at the downstream region of the
first spur dike. It has been pointed out through the field
observation that a boil is generated at the downstream
region of spur dikes. The upward flow in the numerical
result seems to be relevant to the boil.

The reason why the periodic motion is only generated
around downstream inclined spur dikes is unclear. Note
that the location of the separation at the first spur dike in
two Runs are different, i.e,, the separation occurs at the
downstream / upstream corner of the tip of the first spur
dike in Run 1/ Run 2. It is likely that the difference of
separation points at the first spur dike is related with the
magnitude of the unsteady oscillation.

Period of the Oscillation. The flow between two spur
dikes is a typical case of impinging shear layers. The
period of the fluid oscillation in the impinging shear layers
is determined by the feedback effect. In the previous
works of the impinging shear layers in various conditions,
the Strouhal number of the first mode (the oscillation with
the longest period) of the impinging shear layers satisfies
the following equation (e.g. Rockewll et al, 1978).

St =£z0.4~0.6 @n

UO
where L: distance from the initial separation to the
impinging point, Uy: bulk velocity and f: frequency of the
fluid oscillation. Under the present conditions (1.=10cm,
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Figure 8: Time-dependent vertical flow features
(non-linear model, y=-50.0mm)

U= 17.1cry/s, ~1/1.3 s, the Strouhal number becomes
0.45 and is within the range of equation (21).

CONCLUDING REMARKS

3D turbulent flow features around inclined submerged
spur dikes were numerically investigated with turbulence
models focusing on the effects of the inclination angle.
The standard linear k-¢ model and 2nd order non-linear k-¢
model were employed as turbulence models and numerical
results were discussed through the comparison with the
results of the laboratory tests by Tominaga et al (2002).
The results in this study are summarized as follows.
1. The flow fields by two different turbulence models were
quite similar though the turbulence energy around spur
dikes by the non-liner mode! was smaller than that by the
standard model.
2. The flow around upstream inclined spur dikes were
almost steady in both experimental and numerical results,
while, clear periodic oscillations with vortex shedding
were generated around downstream inclined spur dikes.
3. The period of the fluid oscillation in the numerical
results agrees with the first mode of impinging shear layer.
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