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ABSTRACT

This paper describes further developments of a
near-wall second moment turbulence closure of
Manceau and Hanjalic(2002), and its application to
the imposed system rotation. To refine the model,
called “the elliptic blending  model”, an
inhomogeneity correction is added to the near—
wall redistribution term. Also, another approach to
modelling the near-wall limiting redistribution is
employed for the general complex geometries,
which frequently appears in industrial applications.
Concerning the homogeneous redistribution, the
model of Speziale-Sarkar-Gatski(SSG) is replaced
by a Launder-Tselepidakis non-linear model. The
present refined model is tested by direct
comparison with the DNS to validate the
performance of predictions.

INTRODUCTION

In order to make more convenient use of the
second moment turbulent closures, Durbin(1993)
proposed the elliptic relaxation method(ERM), which
can be directly extended to the models down to
the wall with acceptable coarse grids. However,
the ERM of Durbin includes six additional equations
inducing the numerical instability due to their
boundary conditions, which impedes its spreading
into the industry. In order to make up a weak point
of the ERM, Manceau and Hanjalic(2002, hereafter
denoted by MH) suggest another approach, which
is based on a blending of near-wall and far—from
the wall forms of pressure redistribution tensor,
called "the elliptic blending model(EBM)", the
ellipticity being preserved by solving an elliptic
blending function. The model guarantees the main
feature of Durbhin's elliptic relaxation second
moment model but involves only one scalar elliptic
equation. Also, the model has the possibility of
application on industry since this approach offers a
reasonable compromise between simplicity and
consistency with physics. Despite the above
mentioned merits, the predictions due to MH-EBM
may not provide satisfactory results in the complex
flows such as imposed system rotation, since the
model reproduces under-estimated wall-normal
Reynolds stress distribution even in simple channel

flows.

The present contribution describes further
developments of a near-wall second moment
closure due to the refinement of MH-EBM for
convenient industrial applications and its application
to the imposed system rotation to test the
performance of the model. The refinement is
achieved by repairing the redistribution model and
the dissipation tensor. Two  different, but
orthogonal rotation vectors coincident with the
Cartesian coordinates have been imposed on plane
channel cases, which are related to spanwise and
streamwise rotating flows.

MATHEMATICAL MODELS
The original eliiptic blending model
The stress transport model in an incom-—
pressible flow can be written as
Duu,
Dt
The terms on the right-hand side of Eq. (1) are
identified as generation due to mean shear(P;) and
diffusion(Dy;) and

turbulent diffusion(Dg) associated with velocity,

= P+ Fy+ D+ D] + &, —«;. ¢))

system rotation(F;), viscous

1‘edistribution@;) and dissipation(e;), respectively.
To impose the limiting behaviour of the fluctuating

quantities of Reynolds stresses, Durbin(1993)
proposed the ERM as
B — e, = kfy— i, )

k
In the above model, f; is obtained from the elliptic

relaxation equation as

22 1 a2 U U,
[i= LV f;= ?[45,5——-?65@-4‘—];16]. (3)
Also, Durbin(1993) suggested the wall boundary
conditions of f,vj equations to reproduce the wall
limiting behaviour of @;—eij. However, because

the six additional equations for f; induce numerical

stiffness by the imposed boundary conditions, MH
proposed a simpler model preserving the main
features of the ERM. The proposal of MH is to
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model the redistribution term by

q5,/— (1—ka)4>'”+ka<15';, (4)
and the dxssmatlon by
€= (1— )]

where, k is turbulent kmetlc energy and A is the
stress flatness invariant suggested by Lumley
(1978). And, the ellipticity of the model is
preserved by solving an elliptic differential equation
as

1
L? =
a—L*Via= —7 (6)
with the boundary conditions a=0 at the wall

For the reproduction of the limiting wall behaviour

of 451,;, MH suggested the near-wall redistribution
term and a new wall-normal vector concept as
Py =— 5% (ruk"jnk + "j—“knink - é—ﬁrnknz (nin;+ 5,,))
(7
n= _Va

Concerning the quasi-homogeneous model &}
(=@ +P7*“), MH adopted the Speziale, Sarkar

and  Gatski(SSG, 1991)
modification in the coefficient.

In Eq. (6), the time scale T and length scale L
are bounded by Kolmogorov scale as the ERM of
Durbin(1993).

model with some

Refinement of the elliptic blending model

Obviously, it is true that MH-EBM is proposed
to meet industrial needs for a simple and
convenient model, while still preserving the elliptic
relaxation concept and satisfying the near-wall
limiting behaviour. However, because the
wall-normal vector of MH-EBM is not tested by
any internal flows, it is necessary to examine the
validation of the wall-normal vector in a
three—-dimensional flow. Although the profiles of
mean velocity and Reynolds shear stress in the
computations of channel flow due to MH-EBM are
globally well predicted, the profile of Reynolds
normal stress is not fully satisfactory in
comparison with that of the direct numerical
simulation(DNS) data. Also, in spanwise rotating
channel flows, MH-EBM can induce the numerical
instability in high rotation rate, which may be
caused by the under—estimated wall-normal stress

;_172 profile. In order for the model to be used for

the industrial flows including the imposed system
rotation, the redistribution model in this study is
revised to meet universal constraints as

&= (1 — ka) (BF + B5") + ka Dy, ©)
o, O/ OVE s 3w 0VE 9VE
§ = % Oz, o=, 27k Oz; Og

3 u,u]- 6\/—15 8\/E
TV o5, os, (10)
3 —

mh __ A
P Cq;k—u,u ( U, Uy, &0 — 5

9 i
(11

ulu”d vyl JdlA

A

d? = _______N*A —F
0.5 +(NANS)

with the elliptic blending function o suggested by

MH. That is, to apply the model to complex
geometries, we employed another near-wall

redistribution approach ®j on the satisfaction of

i =

< 15 405
4_ 9k af. /€) (12)

wall limiting conditions. And, in order to sensitize
the model to strong inhomogeneity in the buffer
region of wall shear flow, we adopted the indicator

of length-scale gradient direction diA on the

inhomogeneity redistribution model ®§* which is
introduced by Craft(1998). If the length-scale
gradients are large, the value of d,-“l is close to

unity, while it becomes negligible in the regions of
small inhomogeneity. Consequently, the revised
near-wall redistribution model considers the
satisfaction of wall limiting behaviour and
inhomogeneity effects induced in the buffer region.

To decide the coefficient Cp of the inhomo-
geneous redistribution model, an a priori test has
been performed with the DNS database for a
channel flow at Re, = 590, and then a numerical

stability test is carried out to give the confidence
of the present model by the channel flow. These
test results suggest that C3 =5.0.

Fig. 1 shows the redistribution model profiles
obtained from the a priorf test. It can be observed
that the revised present model overestimates the
redistribution of @}, but predicts correctly &7, in
comparison with the DNS data.

In order to enhance the ability of prediction in
the high Reynolds number region, we employed the
non-linear slow term and the cubic quasi-isotropic
rapid model of Launder and Tselepidakis(1991),
which can be expressed as

BL=—2 (Cr+ 1)eb;—4 Cl’e(b,kbkj~ -:1,)—11,,6,-,-]
26 4 (b W+ by W)+ ok (byb Wy + bibu W,
5 (b Wy + by, m)+'5‘ (babu W+ byby 2)

+ %k (bubpSat+ bybySy— 2b58uby— 3blekll_7ij)

+ Gk (16 I, (b W + by W)
+48 (bubi Wi b+ bybiaWinby)} (13)
where
U, . dU,
8= —( 5t azt)’ (19)
oU,  aU,
w,= L+ (ax] az)Jrem,,rzm (15)

are the mean rate of strain and absolute mean
vorticity tensor. The anisotropy tensor and its
invariant are defined as

1 Uu;U; 1
b,-j'—_ 70/,] = ——k‘L -:-3—6,']-, (16)
IIb = b,‘jbﬁ, (17)

Azl——-—g—(a,]ﬂ

3 G y0a01). (18)
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Fig. 1 A priori test in a channel flow for
redistribution model at Re, =590 . symbols : DNS,

lines : models (O, — 95;1; 0, —= &y A, --- Py
T, e QSIZ)

The adopted model coefficients in the present
study are C = 3.1 (Amin(41l,0.6))'”,
Gi'=10.2C, and C,=min (0.6, 4). Note that the
coefficient €)' has been set to 0.2 instead of
—1.2, which leads to better predictions on the
profiles of wall-normal Reynolds stress mainly in
the core region. Also, we replace the dissipation
model through the calibration processes to enhance
the distribution of streamwise Reynolds stress in
the buffer region.

€= (1— \/Xka)ﬂ%e+ \/Z—ka%aﬁj (19)

The unclosed diffusion term in Eq. (1) is

modelled via the standard gradient transport
hypothesis as

r_ 0 | — . Oux
Di] = 5;[ [Ckulu," T 8Imj] y (20)

with the coefficient C, = 0.22.

In order to close the set of governing equations,
the transport equation for € is adopted from the

ERM of Durbin(1993) as

De _ CoPi—Cue | 8 (,,— . Be 5%
Dt~ T + Oz, [CE Uil Tame+ Vaxkazk
D

where C, = C, (140.1P./¢) and the use of the
time scale T is the only modifications of the
standard high Reynolds number model equation.

The coefficients appearing in the equation are
chosen as Cy =135, C,=1.83 and C.=0.17.

NUMERICAL TREATMENT

The Reynolds-averaged Navier Stokes equation
(RANS) simulation using the present refined model
has been performed for the fully developed
non-rotating and rotating channel flows. The
computations for channel flows are carried out with
a simple finite-volume solver and the majority of
the grids is laid in the low Reynolds number region

(y* < 70) while the first grid is located at
yt=0.1.

The Reynolds stresses and the mean velocities
were set to 0 at the wall, and the wall dissipation

rate was assigned to €= 2v(0\/k/9,)*.

RESULTS AND DISCUSSION
Non-rotating channel fiows

Profiles of Reynolds stress in fully developed
non-rotating channel flow are plotted in Fig. 2(a)
compared to the DNS and MH-EBM. The fully
developed non-rotating flow s performed to
calibrate the present model at Re, = 590. This
figure shows that the anisotropy is globally well
predicted. When compared to the MH-EBM, the

distribution of wu, in the wake region is not as
well-captured, but its peak is better reproduced.

25 T T T

20

1000

(b)

Fig. 2 Predicted flow behaviour in a non-rotating
channel at Re, =590 . symbols : DNS, — : present

model, —- : MH-EBM (a) Reynolds stress profiles.
© wu; O wuy & e YV mg) (b) Mean
velocity profiles.
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The profile of wu, is slightly over—estimated in

the buffer region, but the profiles of @ and EEZ

are similar and reasonably close to the DNS. It can
be seen in Fig. 2(b) that the prediction of the
mean velocity profile by MH-EBM is close to the
DNS in comparison with the present model. This
problem seems to be induced by the present
near-wall redistribution model, which is introduced
to consider the inhomogeneity effect in the buffer
region, and we must remember the overestimated

* . . . . -
&, profile in the a priorf test. As will be seen

later, however, the inhomogeneity term offers the
potential for far more reliable predictions on the
imposed system rotation.

In order to determine the present model
coefficients, we computed the non-rotating channel
flows. The model coefficients taken from this
calibration procedure should not have been altered
for the imposed system rotation flow.

Spanwise rotating channel flows

Coriolis and  centrifugal forces arising from
imposed system rotation can substantially alter the
mean flow, the intensity and the structure of
turbulence. Second moment closure is the most
natural level of turbulence model closure to
account for rotation, because this modelling
approach approves the appearance of the exact
production terms due to mean flow gradients and
system rotation. Thus, in order to test the
prediction ability of a second moment closure, it is
natural to consider the rotating channel flow.
A sketch of the computational domain is shown in
Fig. 3, Cases SP and ST correspond to the rotation
around spanwise and streamwise axes, respectively.

When the channel rotates about a spanwise axis,
Coriolis forces stabilize the turbulent flow near the
leading(suction) wall and augments the turbulence
near the trailing(pressure) wall.

Fig. 4 shows the comparisons of turbulent rms
velocity across the channel with the DNS data of
Andersson and Kristoffersen(1995) in spanwise
rotating channel flows. The rotation number Ro is
defined using the channel width D, rotation rate {2
and the bulk mean velocity U,. The predicted

results are limited to the present refined model,
because MH-EBM has failed to reproduce the DNS
at high rotation due to a numerical instability. The
present model predictions of the rms velocities in
Fig. 4(a), which is related to Rotation number

Ty

| 7y Case ST
Case SP v D YV«
‘/ZQsI?'

Fig. 3 Computational domain of rotating channel

Ro= 0.1, compare favorably with the DNS on the
pressure side, but some discrepancies are observed
on the suction side. However, as shown in Fig.
4(b), the rms velocities at the Rotation number
Ro= 0.5 are well reproduced with the inclination

of relaminarization on the suction.- side. The
continuous augmentation of wall-normal intensity
on the pressure side with increased Rotation
number is well captured by the present model. Fig.
4(c) shows the predicted mean velocity profiles
across the channel. The position of maximum mean
velocity is shifted towards the suction side of the
channel and the profiles exhibit the characteristic
asymmetry introduced by the imposed system
rotation which increases with the rotation number.
The model prediction due to Ro= 0.5 compares
well with the DNS data. The normalized friction
velocities on the unstable and stable sides are
compared with the DNS of Andersson and
Kristoffersen(1995) and the experimental data of
Johnston et al.(1972) as shown in Fig. 5. The
present model and the DNS are in good agreement
on the both unstable and stable sides. But, a more
significant difference can be observed on the stable
side in comparison with experimental data. That is,
the predictions do not exhibit the distinct drop for
Ro> 0.1 as indicated by ‘the experiments of

Johnston et al.(1972).
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Fig. 4 Summary of predicted flow behaviour in a
spanwise rotating channel at Re, = 194 . symbols :
DNS (O wu; O wu A w), lines
model
(b) rms velocity fluctuations at Ro= 0.5. (¢) Mean
velocity profiles. symbols : DNS, lines :

present
(a) rms velocity fluctuations at Ro= 0.1,

present model
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Fig. 5 Normalized friction velocities on the two
sides of the channel.

It is noted that, in the calculations with the
present model, a rotating source term in the €
equation, which is frequently added in other elliptic
relaxation equation models to reproduce the
rotation effects(Wizman et al. 1996), is not used.
Since the additional rotating source term is purely
empirical, we think that the use of the term can
induce the unphysical phenomena on the complex
industrial applications.

Streamwise rotating channel flows

The streamwise rotating channel is a challenging
flow field for a second moment turbulence closure,
because, in comparison with the spanwise rotating,
all six Reynolds components are non-zero. Thus,
with the simple flow field relatively, we can decide
whether a new second moment closure reproduces
all Reynolds stress components satisfactorily or

a0 05 10
y/D

(b)
Fig. 6 Predicted flow behaviour in a streamwise
rotating channel at Re, =150 and Ro,=7.5.

symbols : DNS, — ! present model, —— : MH-EBM
(a) Normal stress profiles. (O wu;; O wu, A

) (b) Shear stress profiles. (O wuy; O wtg; A
)
not. In case a fully developed channel flow is

imposed by streamwise rotation, all normal stresses
and wuy; are symmetric about the centerline. In

contrast to those cases, wu; and Y are
antisymmetric about the centerline. From the mean
momentum equations for a fully developed
streamwise rotation channel(Oberlack et al, 1999),

we can derive that the distribution of E varies
linearly across the channel, because the
pressure—gradient in the streamwise direction is
constant. It should be noted that the profiles of
m and UQ_Ug
spanwise mean velocities respectively. Although

uUy 1S not

influence the streamwise and

dependent directly on a mean
momentum equation in a fully developed
streamwise rotating flow, the components obviously
exist due to the rotation.
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Fig. 7 Mean velocity profiles in a streamwise
rotating channel at Re, =150 and Ro,=7.5.

symbols : DNS, — present model, -
MH-EBM. (a) Streamwise mean velocity (b)
Spanwise mean velocity.

Fig. 6(a) shows the Reynolds stress profiles
across the streamwise rotating channel. The
predicted rotation number is Ro,= 7.5, which is
based on the channel width D, rotation rate {2 and
the friction velocity of the non-rotating case U.,.

It is interesting to note that the overall property of
DNS(El-Samni and Kasagi, 2001) is quite well
represented by the present refined model and

MH-EBM. The profile of usu; is fairly well

reproduced but the profile of Uy Uy is

over—estimated in the wall region by the present
model. MH-EBM under-estimates the profile of

Uty In the channel core region as the case of
non-rotating flow. It can be seen in Fig. 6(b) that,

from shear stresses, wuu; profile based on the

present model and 71‘2_7.[3 profile based on MH-EBM

are obtained with reasonable agreement compared
to the DNS of El-Samni and Kasagi(2001).

Although an almost constant component wu, is

obtained from both models in the center region of
the flow as predicted by the DNS, the distribution
due to the present model is under-estimated in
comparison with the DNS and MH-EBM. The
profiles of streamwise mean velocity due to the
present model, which is only influenced by shear

stress % Uy in the streamwise mean momentum

equation, is close to the DNS in comparison with
MH-EBM. In contrast to that case, as shown in
Fig. 7(b), because the spanwise mean velocity is

mainly influenced by component wuyu,, the spanwise
velocity prediction due to MH-EBM is close to the
DNS with superiority in component wu,u; prediction.

Refer to the component wus, predictions by the
models are not able to reproduce the proper trends

of the DNS. The predicted Tu&x profiles in the

whole region except near the wall show the
opposite result of that obtained by the DNS.

CONCLUSIONS

The appropriateness of the present second
moment closure is examined by comparing the
prediction results with the DNS data.

In the spanwise rotating channel flow, the
present model catches very well the effects of
Coriolis forces on the turbulent rms velocity
profiles according to the rotation rate. Although the

distributions of shear stress wuu; across the

streamwise rotation channel are not satisfactory in
comparison with the DNS, the remainder of
computed results including normal stress profiles
are globally well captured by both the present
model and MH-EBM. Thus, the overall results
presented in the present article are in resonable
agreement with the DNS data, giving confidence
the present model can be applied to more complex
flows.
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