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ABSTRACT

The objective is to study the effects of mean scalar
gradient on the structure functions and power
spectrum of the fluctuating scalar field. The scalar
field is created by a continuous iso-kinetic release of a
passive scalar (Sc¢ = 1000) in a turbulent boundary
layer at mid-depth of an open channel flow (Re =

1x10*).  Measurements of the scalar field are
performed using the planar laser induced fluorescence
(PLIF) technique at four distances downstream of the
source in a vertical plane through the plume
centerline. Scaling exponents in the inertial-
convective range, estimated from the second and
higher (even) order structure functions, show
dependence on the longitudinal scalar gradient. As
the mean longitudinal scalar gradient increases, the
longitudinal exponents decrease from the isotropic
expectation of n/3. Scaling behavior is also noted in
the viscous-convective range of the variance
spectrum. The exponent for the dependence on the
wavenumber increases in proportion to the logarithm
of the mean longitudinal scalar gradient. Overall, the
scaling behavior appears to be dependent on the mean
field and agrees with isotropic expectations as the
mean scalar gradient tends toward zero.

INTRODUCTION

Mixing of passive scalars in turbulent flows has
tremendous ~ significance in both applied and
theoretical research. For instance, researchers in
recent years have addressed scalar mixing in the
context of pollutant impact in the atmosphere and
ocean, chemical mixing, and fundamental small-scale
behavior. The promise of a universal characterization
of the fluctuating passive scalar field at a local scale
has motivated many experimental and theoretical

studies with varying degrees of success (Sreenivasan
and Antonia, 1997).

The most common mathematical tools used to
describe the local structure of fluctuating scalar fields
are structure functions and the variance spectrum as a

function of wavenumber. The »" order structure
function for the passive scalar field is defined by:

(a07)=((6x+r)-00))") (1)

where n is the order of the function, & is the
fluctuation of the scalar from the mean, r is the
separation vector, and ( ) denotes ensemble

averaging. The structure function is called
longitudinal when r is in the direction of the mean
flow and transverse when r is orthogonal to the mean
flow. The basic question for on-going research is:
Does the behavior of the structure functions and
variance spectrum possess universal characteristics
(i.e. independent of flow boundary conditions)?
Kolmogorov’s local isotropy phenomenology of
the fluctuating velocity field first addressed the
question of universality through dimensional
arguments and the concept of self-similar eddies that
transfer energy to the dissipative scales via the energy
cascade (Kolmogorov, 1941). Analogous theoretical
arguments were subsequently developed for passive
scalars by Obukhov (1949), Corrsin (1951), and
Batchelor (1959). The theory proposed an analogy of
the inertial range for the passive scalar statistics for
large Peclet number. When the velocity field has an
inertial range, several scaling regimes may exist for
the high Schmidt number passive scalar variance
spectrum and structure functions. The inertial-
convective range is defined as the range with
negligible effects of viscosity and diffusivity (for the
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wavenumber interval }<<k<<i, where L is the

integral length scale). The viscous-convective range is
defined as the range where viscous effects start to play
a role, while molecular diffusivity does not
(4 <<k<<:-). The viscous-diffusive range is defined

for the very high wavenumbers corresponding to
length scales of the order of the Batchelor scale
(k=2).

The phenomenology model for passive scalars,
named KOC theory (Kolmogorov-Obukhov-Corrsin),
provided the scaling behavior of the scalar structure
functions and variance spectrum (which were assumed
to be independent of the direction of r and k).
According to this phenomenology theory for the
regimes described above, the structure functions and
variance spectrum follow a simple scaling behavior
given by:

(A7) e r 3)
E(k) < k* @)

The classic theory predicts {" to be equal to n/3 and
M to be —=5/3 in the interial-convective range. The

phenomenological model failed to fully capture the
characteristics of the local structure of the passive
scalar field. In particular, the scaling exponents for
higher order structure functions were smaller than
n/3 and appeared to reach a constant for large n (now
referred as saturation of the scaling exponents). The
failure was attributed to the fact that KOC did not
account for the intermittency of the dissipation of the
scalar variance (Obukhov, 1962). The refined
similarity hypotheses for passive scalars (RSHP)
incorporated the intermittency to yield better
agreement between theory and experimental
observation for the scaling exponents (Monin and
Yaglom, 1975). Although the scaling exponents
predicted by RSHP were not universal, the predictions
assumed some of the characteristics of the dissipation
field to be universal (such as a joint log-normal
distribution between the fluctuating dissipation rates of
kinetic energy and scalar variance). Nevertheless, the
validity of RSHP (with its assumption of local
isotropy) is questionable due to the fundamentaily
anisotropic nature of the scalar field (Shraiman and
Siggia, 2000). Accepting the fact that the scalar field
is anisotropic, a fundamental question is: How does
the scaling behavior of the structure functions, or in
general any local characteristic, relate to global
characteristics (i.e. mean scalar field)?

The objective of this study is to examine the effects
of the large-scale scalar gradient on scaling behavior
of the structure functions for a high Schmidt number
passive scalar. This will be achieved by studying the
effect of varying mean concentration gradient on the

small-scale characteristics as described by the structure
functions and variance spectrum for the various
scaling regimes.

EXPERIMENTAL PROCEDURE

Experiments are conducted to measure the
fluctuating scalar field in an equilibrium turbulent
boundary layer. Measurements are performed in a
1.07 m wide, 24.4 m long tilting flume for fully
developed, uniform flow conditions (Re = 1x10*

based on mean velocity of 100 mm/s and water depth
of 100 mm). The passive scalar field is generated by a
leaky source (nozzle of diameter 4.7 mm) of the laser
fluorescent dye Rhodamine 6G (Sc = 1000) placed
along the flume centerline at 50 mm from the flume
bed (Fig. 1). The Kolmogorov length scale,

n~(v’/e)v4, and the Batchelor length scale,

Ny ~(wc2/e)w , for this flow and plume are estimated

to be 0.7 mm and 20 um, respectively. A coordinate
system is defined by the longitudinal coordinate, x,
and vertical coordinate, y, with the origin at the

nozzle location.

The planar laser-induced fluorescence (PLIF)
technique is used to measure time records of the scalar
field in a vertical plane parallel to the flow direction on
the centerline of the plume. The laser sheet (created
by sweeping the laser beam with a scanning mirror)
causes the dye to fluoresce and an 8-bit digital CCD
camera (1008x1018 pixels) captures the emitted light
over a 20 mm x 20 mm region (thus, the image
resolution is 20 pm/pixel). The laser beam passes
through a beam expander and convex lens (1 m focal
length), to give a 1/¢’ diameter of 20 pm. Thus, the
measurement technique resolves the Batchelor length
scale in all three directions. The data is captured at 25
Hz with a total of 32,512 samples. Due to finite disk
capacity, a subset of the images (either 6x1018 or
1008x6 pixels) located symmetrically about the nozzle
centerline was saved in real time to the hard drive for
further data analysis. The laser beam sweeps through
the flow very rapidly, essentially freezing the flow
structure (less than 1% error due to advection of the
flow structure). A careful calibration of the
relationship of light intensity to the dye concentration
is performed in situ.

In order to study the variation of small-scale
characteristics with respect to mean scalar gradient,
measurements are performed at four longitudinal
distances from the point source: 250 mm, 500 mm, 1
m, and 2 m. The uniform release conditions and
equilibrium boundary layer yield a constant mean
velocity gradient among the measurements, while the
mean concentration gradient varies over a couple
orders of magnitude.
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RESULTS AND DISCUSSION
Figure 2 shows a sample of the measured

instantaneous scalar field, ©(x, y), normalized by the

source concentration, ©,. The normalization is

implied for the remainder of this paper. It is evident
from the figure that the scalar field is highly
intermittent in space and time and takes zero value
over most of the region. In contrast, a high momentum
release would produce a relatively homogeneous
instantaneous field. In order to study the structure
functions, the scalar field is decomposed using the

Reynolds decomposition: ®=(@)+0 where ( )

denotes time average.

Figure 3 shows the centerline variation of the mean
scalar concentration and suggests a power law decay
over the last three measurement locations. The first
data point does not follow the power law due to the
relative diffusion phenomena that occurs when the
mean size of scalar concentration filaments is smaller
than the eddy size corresponding to the integral length
scale. The concentration gradient in the x -direction is
shown in Table 1.

Table 1: Concentration gradient in x-direction

x (m) d(®)/dx (m’')
0.25 -7.1x107?
0.5 -3.6x107
1.0 -9.0x10™
2.0 -2.2x10™

Figure 4 shows the second order structure functions
in the longitudinal and transverse directions at four
distances downstream. The separation distance, r , is
normalized by the Batchelor length scale, M. An

inertial-convective range scaling is evident in the
structure functions.
Figure 5 shows the estimated inertial-convective

range scaling exponents, {” and ¢, , for the structure

functions of order 2, 4, 6, 8, and 10 as a function of the
longitudinal location. It is clear that longitudinal and
transverse scaling exponents do not agree, thus
indicating anisotropic conditions. "The longitudinal
scaling exponents increase with x, while the
transverse exponents decrease with x.

A different perspective of this trend is achieved by
plotting the scaling exponents as a function of the
mean scalar gradient (Fig. 6). Figure 6(a) reveals the
dependence of the longitudinal inertial-convective
range exponents with respect to the magnitude of the
mean scalar gradient. As the mean scalar gradient
increases the longitudinal exponents decrease for the
higher order structure functions. In contrast, the
exponent for the second order structure function is
nearly constant. For small values of the scalar

gradient, the exponents agree well with the n/3
prediction, while the exponents appear to be saturated
for higher values of mean scalar gradient. It may be
conjectured that as the mean gradient tends to zero, the
exponents tend to the respective isotropic expectation
of n/3.

Figure 6(b) shows the dependence of the inertial-
convective range exponents for the transverse structure
functions on the mean longitudinal scalar gradient.
The exponents appear to increase in proportion to the
logarithm of the scalar gradient at larger values of the
gradient. It must be noted that this trend is perhaps
due to the evolving magnitude of the mean vertical
scalar gradient. Hence, we leave this point for a future
discussion relative to the mean vertical gradient.

Figure 7 shows the saturation of the longitudinal
scaling exponents under the influence of varying mean
scalar gradients. From the figure it is evident that the
exponents agree with the isotropy expectation far from
the source where the mean gradient magnitude is small
(Fig. 7a). The variation with »n saturates for a
moderate mean gradient and asymptotes to near

ln(n” 2) behavior for higher values of the mean

longitudinal  gradient (Fig. 7b). The data
corresponding to the two largest mean scalar gradients
agree well with data complied by Warhaft (2000). A
more theoretical justification for this behavior is
necessary and will be addressed in the future. Figure 8
shows similar saturation behavior for the transverse
inertial-convective range scaling exponents and
suggests that the vertical gradient may have an
important influence on the behavior of the transverse
structure functions.

Figure 9 shows the scalar variance spectrum with
respect to both longitudinal and transverse
wavenumbers, k, and k,. As suggested from the

second order structure functions, there is an inertial-
convective range where the slope is close to the
isotropy expectation of ~5/3. More interestingly, the
viscous-convective range appears to have a scaling
behavior. Figure 10 shows the scaling exponents of
the variance spectra in the viscous-convective range as
a function of mean longitudinal scalar gradient. The
exponents 4, and u, appear to decrease with

increasing mean longitudinal gradient, thus the
spectrum in the viscous-convective range falls off at a
steeper rate.

CONCLUSION

The effect of the mean scalar gradient on the small
scale characteristics of the fluctuating scalar field is
examined. Visualization suggests highly intermittent
dynamics of the scalar field. The structure functions in
the longitudinal and transverse directions reveal
anisotropic behavior. Small-scale characteristics such
as the scaling exponents of the structure functions of
orders 2, 4, 6, 8, and 10 for the inertial-convective
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range depend on the mean scalar gradient. For small
“values of the longitudinal scalar gradient the scaling
exponents of the longitudinal structure functions
appear to agree with the isotropic expectation of n/3.
The exponents saturate for moderate mean gradient

and asymptote to ln(n”z) behavior for larger mean

gradient. The exponents of the transverse structure
function also appear to vary, but the observed trend
may be related with the vertical mean scalar gradient,
which was not quantified by the current measurements.
The variance spectra reveal the dependence of viscous-
convective range scaling behavior with respect to
mean scalar gradient. The exponents for the
dependence on the longitudinal wavenumber in this
range appear to decrease with increasing magnitude of
the mean scalar gradient.

As a final remark, the local structure of the scalar
fluctuations is indeed related to the mean scalar field.
Most of the previous experiments on passive scalars
have been with non-zero mean scalar gradient and
therefore any deviation from isotropic expectations is
no surprise. The preliminary data presented here
indicate that further studies need to be conducted in
order to strongly quantify the relationship between the
local structure and the mean field.
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Figure 2 : Sample of the measured scalar field.

107g
= .
o
o !
~
@1035
-S5i L PR S B S W 1 N T
¢ 10° ‘ o'
x (m)

Figure 3 : Mean concentration along centerline of th¢ plume.
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Figure 6 : Scaling exponents in the inertial-convective range
of the (a) longitudinal, and (b) transverse structure functions
as a function of mean scalar gradient magnitude. The
symbol number corresponds to n .
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Figure 7 : Saturation of the longitudinal scaling exponents in
the inertial-convective range on (a) linear, and (b) semi-log
plots for x =025 m (W), 0.5m (A), ] m(¢), and 2 m (o).
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Figure 8 : Saturation of the transverse scaling exponents in
the inertial-convective range for x =0.25 m (m), 0.5 m (A),
1 m(¢), and 2 m (0).
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Figure 9 : Power spectra of the fluctuating scalar field along
(a) longitudinal, and (b) transverse wavenumbers for x =

0.25m (m),0.5m (A), ] m(¢),and 2 m (0).
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Figure 10 : Scaling exponent in the viscous-convective range
for the longitudinal (O) and transverse (A) scalar variance
spectrum as a function of mean scalar gradient magnitude.
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