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ABSTRACT

Stably-stratified flow of water through a channel with in-
finite side walls is studied using large eddy simulation. Mean
shear in the horizontal plane promotes turbulence while the
orthogonal buoyancy force tends to inhibit vertical fluctu-
ations. The variation of horizontal momentum transport
and vertical mass transport as a function of the general-
ized Richardson number, a measure of stratification relative
to shear, is obtained. It is found that turbulence remains
three-dimensional allowing vertical transport. Although the
vertical eddy diffusivity decreases with increasing value of
the local gradient Richardson number, it is generally larger
than that in the more typical situation of flow in a channel
with vertical shear.

INTRODUCTION

It is well established that stable stratification inhibits
vertical mixing of mass and momentum. In the case of a
stratified medium undergoing vertical shear, a flow that has
been thoroughly investigated in the past, it is known that the
value Rig ~ 0.25 of the gradient Richardson number is key
for demarcating zones characterized by sustained turbulence
from other zones. However, in practice, there are several
situations in environmental applications where stratification
and shear are not aligned, in that there are significant hor-
izontal gradients of mean velocity in a flow with a vertical
density gradient. Although it is intuitively clear that hor-
izontal transport in such a configuration could occur, it is
unclear if a vertical fluctuations with associated buoyancy
flux would survive in the presence of stable stratification.
Fundamental studies of linear stability or of turbulence in
such a configuration are lacking, perhaps due to the inher-
ent three-dimensionality. Indeed, a two-dimensional analysis
in the horizontal plane of shear would completely miss any
vertical transport as well as any possible effect of vertical
stratification on horizontal transport.

In vertical shear (VS) flow, the gradient Richardson num-
ber, Ri; = N2/52, is a fundamental local measure of the
competing effects of stratification and shear on both lin-
ear instabilities and turbulence. In horizontal shear (HS)
flow, although N is associated with vertical stratification
while S is associated with horizontal shear orthogonal to
the direction of stratification, introducing a quantity such

as Hig makes sense if we interpret it as a squared ratio of
two characteristic frequencies imposed on the unsteady mo-
tion, namely, the mean buoyancy, N, and the mean shear,
S. Also, when the normalized equation for the turbulent
kinetic energy is considered, Ri, appears in both horizon-
tal and . vertical shear configurations. An effort to evaluate
the effect of stable stratification in horizontal shear flow in
the context of turbulence was made by Jacobitz and Sarkar
(1999,2000) who performed DNS with uniform values for
both mean shear and vertical stratification. It was found
that, although turbulence was eventually suppressed in the
case of uniform HS, the critical value of Riy ~ 2.0 exceeds
the value of Rig = 0.2 corresponding to uniform VS. Also,
the vertical mass diffusivity was generally larger in the HS
configuration compared to the VS configuration.

Horizontal shear in applications often occurs near solid
boundaries. However, the previous work of Jacobitz and
Sarkar (1999,2000) considered uniform shear and stratifica-
tion in an infinite domain without any boundaries. Insta-
bilities and turbulence in wall-bounded flows, even without
stratification, have qualitative differences with respect to
those in uniform shear flow. The gradient Richardson num-
ber, Rig, is spatially constant in uniform shear flow and is
identical to an overall Richardson number, Ri,, based on
velocity and density differences over a characteristic length
scale. In contrast, wall-bounded flows have as a spatially-
varying Rig which, by virtue of being small in the vicin-
ity of walls, allows near-wall turbulence to persist even if
Ri, = O(1). Based on these considerations, any direct
extension of the previous studies by Jacobitz and Sarkar
(1999,2000) to deduce the role of horizontal shear in wall-
bounded stratified flows would be inappropriate. Therefore,
we investigate here a different flow, a channel with verti-
cal side walls. To the best of our knowledge, it is the first
investigation to focus on mixing in a stratified medium by
horizontal boundary shear.

PROBLEM DESCRIPTION

Flow of water through a channel with infinite vertical
walls separated by a distance 2h, and with a uniform vertical
stratification is studied. From the schematic, Fig. 1, it is
clear that the horizontal mean shear, d < U > /dy, is a
function of the direction y, while the vertical stratification,
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Cas¢ Re, Re, Rir Riy cfx10°
Co 390 7320 O 0 0.60
Cl1 390 7350 7 0021  0.59
C2 390 7500 15 0.044  0.57
C3 390 9025 100 0.20 0.39

CVl 390 8700 200 0.21 0.42

CV2 390 9380 400  0.36 0.36

Table 1: Parameters of the simulations and bulk quantities
of the flow field. Cases C0-C3 correspond to horizontal shear
channel flow while cases CV1 and CV2 correspond to vertical
shear channel flow.

d < p > /dz, is imposed as a constant value. Consequently,
all Reynolds-averaged turbulence statistics vary in a single
direction of inhomogeneity, namely the y coordinate, and
are obtained by averaging in the £ — z plane and in time.
In particular, the buoyancy flux, B =< p’w’ > and the
Reynolds shear stress, < u/w’ >, vary only in the y direction
and not in the z (vertical) direction. For future reference,
we will use indicial notation (i = 1, 2, 3) instead of x, y, z
when convenient. The friction Reynolds number, Re, =
urh/v (based on the half width of the channel h and the
friction velocity u;) is set to Re, = 390 that, in the case of
neutral flow, corresponds to a butk Reynolds number {based
on the bulk, area-averaged velocity of the flow, Up) of Rep =
Uyh/v ~ 7300. The Prandtl number, Pr = 5, corresponds
to thermally-stratified water.

The governing equations are solved using the semi-
implicit fractional step method of Zang et al. (1994). The
spatial derivatives are discretized using second-order cen-
tral differences, the time advancement is carried out using
the Crank-Nicolson scheme for the diffusive term and the
Adams-Bashforth technique for the convective terms. A
multigrid technique is employed for the solution of the pres-
sure equation. A nonuniform grid is used in the wall-normal
y coordinate.

The SGS momentum flux is computed with a mixed
model composed of a scale-similar part (Bardina et al. 1980)
and an eddy viscosity one introduced by Smagorinsky (1963)
using the dynamic procedure of Germano et al. (1992). The
SGS buoyancy flux is modeled by means of a dynamic eddy-
viscosity model as is performed for the evaluation of the
constants. Unphysically large back-scattering is avoided by
setting the coefficients to zero whenever they reach negative
values. Details on the SGS models and the validation of
the numerical algorithms in the stratified VS configuration
are given by Armenio and Sarkar (2002). For the horizontal
shear configuration, only the passive scalar case of Matsub-
ara et al. (1998) at a Reynolds number, Re, = 150, and
Prandtl number, Pr = 0.7 is available. The first and second
order statistics (not reported here) obtained by LES com-
pare well with the reference DNS data of Matsubara et al.
(1998).

The domain is chosen to be 27h in the streamwise direc-
tion, wh in the vertical direction and 2h in the wall-normal
direction. The grid used has 64 x 96 x 64 cells in the stream-
wise, wall-normal and vertical directions, respectively. Four
cases are simulated: a passive scalar case (CO) in which the
velocity field is not affected by the evolution of the density
field and three cases (C1,C2,C3) with progressively increas-
ing values of N. The cases investigated are reported in Table
1.

In order to place the results of HS channel flow in con-
text of the more typical case of vertical shear, we have also

performed two additional computations of VS channel flow
at the same values of Reynolds number, Rer = 390, and
Prandtl number, Pr = 5. In both VS and HS cases, the
mean flow is sustained by a mean, driving, pressure gradient.
The stable stratification is maintained in the VS configura-
tion by setting the upper wall at a density lower than that of
the lower wall so that, unlike the HS case, the mean density
gradient and associated Brunt-Vaisala frequency N evolve
with the flow and are not held constant. The VS simulations
have been carried out using 64 x 64 grid points in the stream-
wise and spanwise directions, respectively, while the vertical
direction has 128 points. In the case of vertical shear, the
bulk Richardson number is defined as Rip = gAph/2pou§,
where Ap denotes the density difference that is imposed be-
tween the upper and lower walls, and similarly, the friction
Richardson number is defined by Rir = gAph/ pou?.

As discussed in the introduction, the gradient Richard-
son number, Rig = N 2/82, is a fundamental local measure
of the competing effects of mean shear that promotes tur-
bulence and mean stratification that tends to suppress tur-
bulence. Fig. 2 shows the variation of Riy as a function of
wall-normal distance, y/h in the case of HS channel fiow and
z/h in the case of VS channel flow. There is an important
qualitative difference between VS and HS cases: for the same
overall stratification (Rir or Rip), the gradient Richardson
number, Rig, is generally larger in the HS case at a given
distance from the wall. Even HS case C1 with the smallest
value of Rip = 0.021 has Rig4(2) that is generally larger than
VS case CV2 with the largest value of Rip = 0.36. This is
a consequence of the fact that, in the HS configuration, N
is held constant while, in the VS configuration, turbulence
near the wall is able to mix up the density field in the mean
reducing the local value of N and therefore Rig = N 2/52,

VELOCITY STATISTICS

Figure 3 shows the mean velocity profile as a function of
the distance from the wall, for several cases of stratification.
The driving mean pressure gradient is not changed between
the cases and therefore, as shown by Fig. 3, the wall shear
stress, equivalently, the slope of the mean velocity profile
at the wall is also unchanged. Figure 3 also shows that the
velocity field is very weakly affected by stratification in cases
C1 and C2, whereas a stronger change of the velocity profile
is observed in case C3. Thus, when stratification acts in a
direction normal to the plane of flow, it can alter the mean
velocity field only if it is rather large.

The turbulent intensities are reported in Fig. 4. It is
clear that there is a noticeable reduction of the level of fluc-
tuations as the stratification increases with the suppression
of the vertical as well as the wall-normal fluctuations be-
ing more intense than that of the streamwise fluctuation,
that is almost unaffected by stratification. This can be ex-
plained looking at the transport equation for the Reynolds
stress tensor. Among the three velocity components, strat-
ification directly affects only the vertical Reynolds stress
< w2 >, through the destruction supplied by the buoyancy
term B = Ri < p'’w’ >. Therefore, the vertical fluctuat-
ing field is somewhat suppressed by stratification, (Fig. 4c),
whereas the streamwise Reynolds stress is very weakly influ-
enced by stratification (Fig. 4a) since the production term
P, =— <u"v"” >d < wu> /dyis nearly unchanged.

Thus, it appears that, for the stratified cases considered
here, the vertical turbulence level remains substantial and
stratification is not able to two-dimensionalize the fluctu-
ating motion. Horizontal fluctuating vorticity (not shown
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here) remains substantial and so does the pressure-strain
(not shown here) component in the transport equation for
the vertical fluctuation.

COMPARISON OF HS AND VS CASES

In the previous uniform-shear simulations, the value of
Rig was constant in any given case because so were N and S
making it easy to compare HS and VS cases. Here, the Ri,
profiles are qualitatively different as indicated by Fig. 2 and
the accompanying discussion and, therefore, direct compar-
ison between HS and VS configurations is not possible. As
an alternative, we discuss profiles of key quantities as a func-
tion of Rig so as to, first, identify key differences between
HS and VS cases and, second, to explore the role of Rig in
identifying stratification effects on turbulent transport.

The vertical eddy diffusivity, k7, of mass is compared
between HS and VS configurations in Fig. 5. Normalization
is with respect to the molecular viscosity which is identical
between all cases. In the stratified region, Rig > 0.1, the val-
ues of kr are generally much larger in the HS configuration
relative to the VS configuration. Apparently, the fluctu-
ating vertical shears associated with mean horizontal shear
are more effective in overcoming the stabilizing influence of
stratification than those associated with mean vertical shear.
In the vicinity of the wall, again the HS configuration is
more effective in mediating vertical transport. The reason is
now different; the vertical velocity in the HS configuration is
spanwise while it is wall-normal in the VS configuration and,
going away from the wall, the spanwise component (linear
variation) increases faster from zero than the wall-normal
component (quadratic variation).

Finally, we show two relevant quantities, namely the cor-
relation coefficient of the vertical buoyancy flux

Cow = < pgw >
PrmsWrms
and the correlation coefficient of the wall-normal momentum
flux .
Cuvn = _<"‘_u 'Un_> )
UrmsUn,rms
with v, denoting the wall-normal component of the velocity
field. Figure 6 shows Cpw plotted against the local param-
eter Riy for the VS case and the HS case. The behavior
is qualitatively similar in all cases. In particular, it is rela-
tively constant in the region of small values of Rig, it decays
when Rig reaches a critical value and, beyond that, C,y
rapidly goes to 0. In spite of this qualitative similarity, im-
portant differences occur between HS and VS configurations;
the most important is that the value of Rig required for the
correlation coefficient to decay is one order of magnitude
smaller in the VS cases compared to the HS cases. Indeed,
in the VS configuration, the correlation coefficient sharply
decays to zero in the vicinity of Rigz ~ 0.2, similar to the be-
havior observed by Armenio and Sarkar (2002) even though
the Peclet number Pe, = Re, Pr in that study was smaller
than that of the present investigation by a factor of 10. In
the horizontal-shear case, we do not observe a sharp reduc-
tion of the correlation coefficient at Riy ~ 0.2; rather, there
is a gradual decrease of the correlation coefficient and it ap-
proaches zero at values of Rig ~ 2, an order of magnitude
larger than VS channel flow. Furthermore, in the VS con-
figuration, the coefficient gets negative in the range of large
values of Rig, due to the observed counter-gradient fluxes.
On the other hand, in the HS configuration, positive values
of Cpy are obtained in all the cases simulated.

The behavior of the correlation coefficient of momentum
flux is completely different in the HS case compared to the
VS case. Figure 7(a) shows the coefficient Cy.,, as a function
of the gradient Richardson number. In the VS configuration,
this coefficient is qualitatively similar to that of the buoy-
ancy flux, in that it is nearly constant for small values of
Rig, it dramatically decreases near Rig ~ 0.2 and tends to 0
as the gradient Richardson number further increases. Thus,
it exhibits a universal behavior, when plotted against Rig,
for example, compare curves C1V and C2V of Fig. 7(a) of
the present work, Fig. 20 of Armenio and Sarkar (2002)
and Fig. 7 of Komori et al. (1983) obtained for different
values of the Peclet number. Furthermore, in the VS config-
uration, the coefficient exhibits a weak dependence on the
overall stratification, quantified for example by Ri, or Rip,
in that, at a given value of the local parameter Rig, the
coefficient slightly decreases with increasing stratification.

In the HS cases, the correlation coefficient of the mo-
mentum flux, Cys,,, behaves very differently; in particular,
when it is plotted against the gradient Richardson num-
ber (Fig. 7a) we do not observe any collapse between cases,
rather, we note that the value of Rigy at which the coefficient
starts to decrease, increases with stratification. It is clear
that the local parameter Rig is not the proper one for the
characterization of Cyy,, . In contrast, when the coefficient
is plotted against y* = yu, /v (Fig. 7b), we observe that the
coefficient collapses over a very narrow range of values in all
three cases examined. In particular, independent of the level
of stratification, the coefficient rapidly increases in the near
wall layer (up to y* = 10), it has a saddle-like behavior in
the buffer layer (10 < y* < 50), it is nearly constant in the
log-layer and then decreases to 0 in the core region of the
boundary layer. The final decrease to zero in the core re-
gion is simply because the mean shear relaxes to zero at the
centerline. Thus, insofar as horizontal momentum transport
is concerned, stable stratification in the range studied here
has little effect on the relevant correlation coefficient.

PARAMETERIZATION OF VERTICAL TRANSPORT

The objective here is to derive a simple algebraic relation-
ship for the vertical eddy diffusivity of mass, k7, that can
be used to estimate the vertical mixing from measurements
of the mean velocity and density in the HS configuration.

The starting point of the present parameterization is that
the vertical eddy diffusivity can be written, without any ap-
proximation, as:

< puw > Coww?,, ¢
kr=——~>1— " _—C,.L = —= 1
T d<p>/dz pwlEWrms NFry, )

where, as defined previously, C,y, denotes the correlation co-
efficient of the buoyancy flux, Lg = prms/(d < p > /dz) is
the Ellison length scale, and Fry = wrms/NLg is the ver-
tical turbulent Froude number. In our LES, we observe the
presence of two separate regions away from the viscous wall
region, namely an inner, buoyancy influenced (BI) region
with small values of Ri; and an outer, buoyancy dominated
(BD) zone with large values of Rig. The BI zone, with gen-
erally larger k relative to the BD region, has the peak value
of k. The extent of these two zones depends on the overall
level of stratification and they merge with each other in a
zone where the gradient Richardson number Rig = O(1).
First, consider the buoyancy-dominated outer region,
Rig > 0.5. Here, the vertical Froude number does not de-
pend on the overall level of stratification (Ri; or Ri,) and
the asymptotic value is F'ry, = 0.8 for all cases investigated.
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Also, Fig. 4(c) suggests that the vertical turbulent intensity
in the outer layer can be approximated by wrms/u-» ~ 0.5,
in cases Cl to C3. With these values in Eq. (1), the value
of the eddy diffusivity in the BD region reads as:

wzms ug'
kr pp = 1.25Csuw N ~ 0.31pr7v-

@

We emphasize that Cpy is not constant, see Fig. 6, and
it decreases with increasing Rig in the outer layer so that
kr decreases faster than 1/N in the BD region. Eq. (2)
belongs to the following family of models suggested by simple
dimensional analysis:

wgms

kT =CN —N— ) (3)
where the proportionality coefficient was originally taken
to be approximately constant, ¢y =~ 0.16, by Hunt et al.
(1995), but later recognized to be a function of Rig, for ex-
ample, by Schumann and Gerz (1995) based on VS data
in the atmospheric boundary layer data and uniform shear
flow. The present LES data support Eq. (3) in the BD re-
gion with ¢y a decreasing function of Riy and a maximum
value of ¢y ~ 0.3.

Now, consider the buoyancy-influenced region. In the
buoyancy-influenced (BI) zone, Eq. (2) predicts smaller val-
ues of kr relative to the LES data and requires modification.
We find that the peak diffusivity varies as

2
kT peak = O-4Ri9—'2509w UWT ’ 4

where wyrms has taken to be proportional to ur. The eddy
diffusivity model in the BI region must match that in the
BD region and, therefore, the parameterization becomes:

kr = fuw [(kT,peak — k7,8D)f(Rig) + ke, BD]  (5)

where f(Rig) = 1 as Rig — 0 to match the peak value of
the BI layer, and f(Rig) — 0 as Rigy — oo to match the BD
layer. The following function,

1

Rig) = ———r
f(Rig) 1+ 50Ri’

(6)
fitted over the present LES data, has been found to work
satisfactorily.

In order to go further with the parameterization, we need
an analytical expression for the correlation coefficient, Cp.

An analytical expression that fits well the curves of Fig. 6
for cases C1 to C3 is:

Cp'w,peak
Cow = =

0.2+ 0.lexp(—0.1Ri,)
1 + Rig '

1+ Rig

(7

The term in the numerator represents the observed fact that
the peak value of the correlation coefficient decreases some-
what from case CO to C3 at a constant value of Rig.

Finally, we consider the viscous layer adjacent to the wall
where molecular effects are directly important. Since the
buoyancy flux B = 0 at the wall, such is the eddy diffusivity.
Therefore, the parameterized kT needs to multiplied by a
damping function in the viscous region of the boundary layer
similar to the van Driest damping function that is widely
used in wall-turbulence modeling. A damping function that
fits the present LES data is:

fuw =1 —exp(—0.09yT). (8)

Eq. (8) ensures that f,, = 0 at the wall and goes to unity at
the edge of the viscous near-wall region, yt >~ 30.
Thus, the complete parameterization is:

2
kr = Cpuw %[0.31 — 0.4Ri%% f(Rig)|fu (9)

with Cpuw(Rig, Ri-), fw(y?) and f(Rig) defined by
Eq. (7), (8) and (6), respectively.

Fig. 8 shows wall-normal profiles of the eddy diffusivity,
kr. The BD model, Eq. (2), valid for Rig > 0.5, is a good
representation of the outer layer which ranges from a small
physical extent, y/h > 0.75, in case C1 to a larger region,
y/h > 0.4, in case C3 with stronger stratification. Fig. 8(b)
shows the performance of the composite parameterization,
Eq. (9), over the channel half width. Given the large varia-
tion of Rig in any given case and the large change in N 2 by
an order of magnitude between cases, the agreement between
the parameterization and the LES data is good.

CONCLUSIONS

The primary question is whether the horizontal mean
shear associated with the vertical side walls can mediate
vertical mass transport against stable stratification. It is
found that the fluctuating motion remains three-dimensional
and the vertical component has an associated buoyancy flux.
Although, the mean vorticity is vertical, there are regions
of strong horizontal fluctuating vorticity which can induce
rotational motion in the vertical plane and thereby mix-
ing of the density field. There are many indicators that
mean horizontal shear (HS) is more effective in promoting
vertical buoyancy fluxes than mean vertical shear (VS) in
stably-stratified regions of the flow. The increased eddy
diffusivity and the increased range of Riy, over which the
density-velocity correlation coefficient is greater than zero
are two such indicators. Profiles of the Ellison length scale
and the mixing efficiency, B/e, not shown here, are also in-
dicative of increased vertical transport associated with HS.

To interpret field or laboratory data, it is useful to relate
the eddy diffusivity to observable mean data. To that end, a
simple parameterization, based on the LES data and guiding
physical principles, is proposed.
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Figure 4: Turbulent levels for several levels of stratification:
a)streamwise, b)wall-normal, c)vertical, and d) shear stress.
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Figure 5: Vertical eddy diffusivity of mass for several levels of
stratification in the horizontal shear case and in the vertical
shear case.
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Figure 6: Correlation coefficient of the buoyancy flux versus
the gradient Richardson number for several levels of strati-
fication in the HS case and in the VS case
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Figure 7: Correlation coefficient of wall-normal momentum
flux, plotted against: a) gradient Richardson number, b)
nondimensional distance from the wall.

150
B CI(LES data)
oty . mee=== C1 (BD model)
LI C2(LES data)
] - 2s €2 (BD model)
90 F B n C3 (LES data)
wearmisemsars C3 (BD model)

3.2
(a)
180 ] C1 (LES data)
----- C1 (model)
150 & C2(LES dma)
....... e C2 (model)
©  C3(LES data)
i 120 p— C3(mad¢l)’ ’
¢ 90
60 3.
30 184 A
N ; s 8,
s 03
(b)

Figure 8: Wall-normal profile of eddy diffusivity obtained
with the proposed parameterization along with LES data of
HS channel flow. (a) The BD component, Eq. (2), in the
outer region, (b) The composite parameterization, Eq. (9),
over channel half-width.
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