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ABSTRACT

Direct numerical simulations are performed in order to
investigate turbulent dispersion of concentration fields in
stably stratified shear flow. The Richardson number is var-
ied from Ri = 0, corresponding to unstratified shear flow,
to Ri = 0.4, corresponding to strongly stratified shear flow.
The total energy is found to grow for weakly stratified cases
with Ri < 0.1 and to decay for strongly stratified cases with
Ri > 0.1. The kinetic energy is distributed unevenly over
the three velocity components with downstream > spanwise
> vertical.

Turbulent dispersion of two species ¢, and ¢y with ini-
tially Gaussian mean concentration variations in the vertical
z and spanwise y directions is investigated. At a given
Richardson number Ri, a slower spreading of ¢, in the verti-
cal direction is observed compared to the spreading of ¢y in
the spanwise direction. This observation is consistent with a
lower turbulent fluctuation level in the vertical velocity com-
ponent compared to the spanwise velocity component. With
increasing Richardson number, dispersion in both the ver-
tical and spanwise direction is decreased due to decreased
turbulent velocity fluctuations. A variation of the initial
widths of the mean concentration profiles results in nearly
identical values of the widths toward the end of the simula-
tions.

INTRODUCTION

Understanding of turbulent dispersion of substances re-
leased into the geophysical environment is incomplete. For
example, two conflicting dispersion models have been pro-
posed in the past and are widely used to parameterize ver-
tical dispersion of pollutants in the atmospheric boundary
layer (Hunt 1982; Venkatram, Strimaitis and Dicristofaro
1984). The turbulent motion in the geophysical environ-
ment is strongly affected by the competing effects of shear
and density stratification. In this study, direct numerical
simulations are performed in order to study turbulent dis-
persion in stably stratified shear flow.

The prototypical example of stably stratified shear flow
with uniform vertical shear and uniform vertical stable strat-
ification is considered here. In this flow, the mean down-
stream velocity component and the mean density vary lin-
early in the vertical direction:

U= Sz V=W=0 0=po+Spz (1)

The shear rate § = 9U/8z and the stratification rate S, =
0p/0z are constant.

Due to its geophysical importance, stably stratified shear
flow has been studied extensively in the past. Using en-
ergy considerations, Richardson (1920) and Taylor (1931)
established the Richardson number Ri = N2/S? as the pri-
mary parameter to describe the stability of stratified shear

flow. Here, N = /—9¢S,/po is the Brunt-Viisili frequency
and S is the shear rate. Miles (1961) and Howard (1961)
showed that the flow is stable for Ri > 1/4 using linear invis-
cid stability analysis. More recently, stably stratified shear
flow has been studied in great detail, both experimentally
(Komori, Ueda, Ogino and Mizushina 1983; Rohr, Itsweire,
Helland and Van Atta 1988; Piccirillo and Van Atta 1997), as
well as numerically (Gerz, Schumann and Elghobashi 1989;
Holt, Koseff and Ferziger 1992; Itsweire, Koseff, Briggs and
Ferziger 1993; Jacobitz, Sarkar and Van Atta 1997; Jacobitz
2000).

In the simulations performed here, two scalar concentra-
tion fields ¢, and ¢y are present. Both species fields initially
have a Gaussian mean concentration variation with a maxi-
mum in the center of the computational domain. The mean
of ¢, varies in the vertical z direction and the mean of ¢y
varies in the spanwise y direction. This allows the study
of both vertical and spanwise turbulent dispersion in stably
stratified shear flow.

In the following section, the numerical approach is sum-
marized. Then, the evolution of the flow field is addressed
and the dispersion of the species fields is discussed. Finally,
the observations of the current study are summarized.

NUMERICAL APPROACH

The direct numerical simulations performed here are
based on the continuity equation for an incompressible
fluid, the unsteady three-dimensional Navier-Stokes equa-
tion in the Boussinesq approximation, and advection-
diffusion equations for the density and concentration fields.
In the direct numerical approach, all dynamically impor-
tant scales of the velocity, density, and concentration fields
are resolved. The equations are solved in a frame of refer-
ence moving with the mean flow (Rogallo 1981). A spec-
tral collocation method is used for the spatial discretization
and the solution is advanced in time with a fourth-order
Runge-Kutta scheme. All simulations are initialized with
an isotropic turbulence field that was allowed to evolve for
about one eddy-turnover time in a separate simulation with-
out shear or stratification. Initially, there are no density
or concentration fluctuations present. The simulations are
performed on a parallel computer using a grid with up to
256 X 256 x 256 points.

RESULTS

In this section, results from a series of direct numerical
simulations are presented, in which the Richardson number
is varied from Ri = 0 to Ri = 0.4. All simulations are
initialized with isotropic turbulence fields without density
or concentration fluctuations. The initial Taylor microscale
Reynolds number Rey = 45 and the initial shear number
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Figure 1: Evolution of the total energy F with nondimen-
sional time St. The Richardson number is varied from
Ri = 0 (unstratified shear flow) to Ri = 0.4 (strongly strat-
ified shear flow).
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Figure 2: Evolution of the energy partition K/F (solid lines)
and K,/FE (dashed lines) with nondimensional time St. The
arrows indicate an increase of the Richardson number from
Ri=0to Ri=0.4.

SK/e = 2 are matched in all cases. The Reynolds number
reaches values as high as Rey = 100 and the shear num-
ber assumes a value SK/e = 6 in the simulations. The
Prandtl number of the density field is Pr = 0.7 and the
Schmidt number of the concentration fields is Sc = 2. The
species fields ¢; and ¢, initially have a Gaussian-shaped
mean concentration variation in the vertical z and spanwise
y direction, respectively. In the following, the energetics of
the velocity and density fields are presented first. Then the
evolution of the concentration fields is discussed.

Energetics

Figure 1 shows the evolution of the total energy E =
K + K, with nondimensional time St. Here K = iU /2 is
the turbulent kinetic energy and K, = gpp/(2p0S,) is the
potential energy. Initially, the total energy E decays due to
the isotropic initial conditions until the shear production of
turbulence develops at about St = 3. For strongly stratified
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Figure 3: Evolution of the diagonal (solid lines) and off-
diagonal (dashed lines) components of the Reynolds stress
anisotropy tensor b;; with nondimensional time St. The
Richardson number is R: = 0.
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Figure 4: Evolution of the diagonal (solid lines) and off-
diagonal (dashed lines) components of the Reynolds stress
anisotropy tensor b;; with nondimensional time St. The
Richardson number is Ri = 0.2.

cases with Richardson numbers Ri > 0.1, the total energy
E continues to decay. For weakly stratified cases with Ri <
0.1, the total energy E eventually grows as the simulations
advance in time.

Figure 2 shows the contribution of the turbulent kinetic
energy to the total energy K/E (solid lines) and the con-
tribution of the potential energy to the total energy K,/E
(dashed lines). As the Richardson number Ri is increased,
the contribution of the potential energy K,/E increases,
while the contribution of the turbulent kinetic energy K/E
decreases. The strongly stratified case with R = 0.4 shows
a periodic exchange between kinetic and potential energy,
indicating the presence of internal waves in the flow field.

In order to evaluate the distribution of the turbulent
kinetic energy over the three velocity components, the
Reynolds stress anisotropy tensor b;; is considered:

e

bij = ——L — 284 2
Y a3 @
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Figure 5: Evolution of the vertical mean concentration field
¢; with nondimensional time St. The Richardson number is
Ri=0.
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Figure 6: Evolution of the horizontal mean concentration
field ¢y with nondimensional time St. The Richardson num-
ber is Ri = 0.

Note that all components of bij vanish for isotropic turbu-
lence.

Figure 3 shows the evolution of the components of the
Reynolds stress anisotropy tensor b;; for an unstratified sim-
ulation with Ri = 0. The solid lines show the diagonal
components of the tensor. Due to shear production of turbu-
lence, b1; has a surplus. The kinetic energy K is distributed
over the three velocity components with downstream > span-
wise > wvertical. The dashed lines show the off-diagonal
components of b;;. Due to the symmetry of the problem
only the b13 component is nonzero. This component is di-
rectly related to the normalized production of turbulence
(Jacobitz et al. 1997).

Figure 4 shows the evolution of the components of the
Reynolds stress anisotropy tensor b;; for a strongly strati-
fied simulation with Ri == 0.2. As in the unstratified case
with Ri = 0, the kinetic energy K is distributed over the
velocity components with downstream > spanwise > ver-
tical. The level of anisotropy, however, is increased. The
bss component has a larger deficit due to the conversion of
vertical kinetic energy to potential energy. Also, the magni-
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Figure 7: Evolution of the vertical mean concentration field
¢, with nondimensional time St. The Richardson number is
Ri =0.2.
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Figure 8: Evolution of the horizontal mean concentration
field ¢y with nondimensional time St. The Richardson num-
ber is Ri = 0.2.

tude of the b;3 component is decreased, indicating a reduced
production of kinetic energy in the strongly stratified case.

Turbulent Dispersion

In this section, the dispersion of the concentration fields
¢ and cy is discussed. The species field ¢, initially has
a Gaussian mean concentration variation in the vertical z
direction and the species field ¢, initially has a Gaussian
mean concentration variation in the spanwise y direction.
The maximum concentration of both species is located in
the center of the computational domain. Both concentration
fields are initialized without concentration fluctuations.

Figures 5 and 6 show the evolution of the mean con-
centration variation of ¢, and ¢y, respectively, for an un-
stratified simulation with Ri = 0. The mean concentration
components are obtained from plane averages in the vertical
z direction of ¢, and from plane averages in the spanwise
y direction of cy. As the simulation advances in nondimen-
sional time St, the mean profiles decay in amplitude and
disperse considerably. Consistent with the observation that
the spanwise velocity component is more energetic that the
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Figure 9: Evolution of the width o, with nondimensional
time St. The Richardson number is varied from Ri = 0 to
Ri=04.
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Figure 10: Evolution of the width ¢y with nondimensional
time St. The Richardson number is varied from Ri = 0 to
Ri=04.

vertical velocity component, the spread of ¢y in the span-
wise direction is stronger that the spread of ¢, in the vertical
direction. Similarly, the decay of the maximum mean con-
centration is more rapid for ¢y than for c..

Figures 7 and 8 show the evolution of the mean concen-
tration variation of c, and ¢y, respectively, for a strongly
stratified simulation with Ri = 0.2. Again, the spanwise
spread of ¢, is stronger that the vertical spread of c..
The maximum mean concentration of ¢, decays much more
rapidly than the maximum mean concentration of c;.

A comparison between the unstratified and stratified
cases shows that the decreased turbulence levels of the strat-
ified case leads to decreased dispersion rates in the spanwise
direction and, particularly, the in the vertical direction.

A good measure for the vertical extend of the concentra-
tion field ¢, is given by o0:

— )2
Z :'f_cf_(fzﬁ:_)ﬂ (3)

(24

Similarly, the spanwise extend of the concentration field cy

can be determined by oy:

,  Jey(y—wo)ldy
o, = —F———
f cydy
Here, 2o and yo dénote the positions of the maximum mean
concentration.

Figures 9 and 10 show the evolution of o, and gy, respec-
tively, for all simulations performed here with Richardson
numbers from Ri = 0 to Ri = 0.4. Initial spreading of
the concentration fields is observed for all cases due to the
isotropic turbulence with which the simulations are started.

The vertical spreading of ¢, is strongest for the unstrat-
ified case with Ri = 0, in which o, reaches about twice
its initial value at the end of the simulation at St = 12.
The vertical spreading is reduced with increasing Richardson
number Ri as the vertical turbulent kinetic energy decreases.
The strongly stratified case with Ri = 0.4 shows nearly no
spreading after the initial decay of the turbulent velocity
fluctuations.

The spanwise spreading of ¢y again is strongest for the
unstratified case. Here, oy, reaches about three times its ini-
tial value at the end of the simulation at St = 12. With
increasing Richardson number Ri the spreading of ¢y de-
creases. Due to the higher fluctuation level in the spanwise
velocity component, compared to the vertical velocity com-
ponent, the spanwise spreading is always stronger than the
vertical spreading at a given Richardson number.

Figures 11 and 12 show the evolution of the concentra-
tion fluctuations ¢, and ¢}, respectively, for the unstratified
simulation with Ri = 0. The concentration fluctuations are
obtained as plane averages in the vertical z direction of ¢,
and from plane averages in the spanwise y direction of c;.
The simulations are initialized without concentration fluctu-
ations. Concentration fluctuations develop quickly and show
a maximum close to the regions of maximum mean concen-
tration gradient. A decay of the concentration fluctuation
magnitude is observed as a result of the competing effects of
decaying mean concentrations and increasing velocity fluc-
tuations. As the vertical velocity component has a lower
fuctuation level than the spanwise velocity component, the
mean concentration spreads more slowly in the vertical di-
rection. Therefore, the mean concentration gradient remains
larger in the vertical direction, resulting in a higher level of
concentration fluctuations.

Figures 13 and 14 show the evolution of the concentration
fluctuations ¢ and cj,, respectively, for a strongly stratified
simulation with Ri = 0.2. Here, the vertical velocity com-
ponent is suppressed by stratification, resulting a a lower
concentration fluctuation level of ¢, compared to cj,.

Figures 15 and 16 show the effect of a variation of the ini-
tial widths o, and oy of the species fields ¢, and ¢y, respec-
tively, for unstratified simulations with Ri = 0. Compared
to the simulations from the Richardson number variation dis-
cussed above, the initial values of ¢, and oy are decreased
here. Both o, and oy increase rapidly as the simulations ad-
vance in time. The final values of o, and oy are each nearly
identical at the end of the simulations at St = 12.

(4)

SUMMARY

In this study, direct numerical simulations have been
performed in order to study turbulent dispersion in stably
stratified shear flow. A series of simulations was performed
in which the Richardson number was varied from Ri = 0,
corresponding to unstratified shear flow, to Ri = 0.4, corre-
sponding to strongly stratified shear flow. The total energy
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Figure 11: Evolution of the concentration fluctuations ¢/,
with nondimensional time St. The Richardson number is
Ri =0.0.

1

0.8 [

0.6

y/2n

0.4

0.2

0 0.02 0.04 0.06 0.08

Figure 12: Evolution of the concentration fluctuations ¢y
with nondimensional time St. The Richardson number is

Ri = 0.0.

E was observed to grow for weakly stratified cases with
FRi < 0.1 and to decay for strongly stratified cases with
Ri > 0.1. The contribution of the kinetic energy to the total
energy K/E was found to decrease with increasing Richard-
son number and the contribution of the potential energy to
the total energy K,/E was found to increase with increas-
ing Richardson number. The kinetic energy was distributed
over the velocity components with downstream > spanwise
> wvertical.

The dispersion of two species fields ¢, and cy with an
initially Gaussian mean concentration variation in the ver-
tical z direction and spanwise y direction, respectively, were
considered. Vertical spreading o, was found to be weaker
that spanwise spreading oy, for both unstratified and strat-
ified simulations. This is consistent with the observation of
a lower turbulent fluctuation level in the vertical velocity
component compared to the spanwise velocity component.
With increasing Richardson number Ri, the increase of both
o and oy slows, due to decreasing turbulent velocity fluctu-
ations. A variation of the initial width of the concentration
fields resulted in nearly identical final values of both o, and
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Figure 13: Evolution of the concentration fluctuations ¢,
with nondimensional time St. The Richardson number is
Ri=10.2.
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Figure 14: Evolution of the concentration fluctuations c;
with nondimensional time St. The Richardson number is

Ri =0.2.

oy at the end of the simulations.
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