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ABSTRACT

A new simple Lagrangian dispersion model for neutral at-
mospheric boundary layer is proposed. A version of the Gen-
eralized Langevin equation corresponding to the Isotropiza-
tion of Production Reynolds stress model is applied to hori-
zontally homogeneous equilibrium turbulent boundary layer.
Constrains for the model constants are derived from the self-
similarity condition of near-wall turbulence. The proposed
model is tested for the prediction of dispersion due to a point
source in two dimensions and compared with available ex-
perimental data and other well-known models.

INTRODUCTION

An important issue in environmental science is predic-
tion of air pollution in the atmospheric boundary layer.
Several Lagrangian dispersion models in neutral turbulent
boundary layer have been proposed by many authors and
are well documented in Kurbanmuradov & Sabelfeld(2000).
The main difficulty in Lagrangian modeling comes from the
inhomogeneity of turbulence near the wall where pollutant
is typically released. ‘Thomson(1986) proposed a criteria,
the so-called well-mixed condition, for the Lagrangian dis-
persion model in turbulent flows. Thomson’s model(1986),
Reynolds’s model(1998b) and Kurbanmuradov & Sabelfeld’s
model(2000) belong to the well-mixed class. The well-
mixed condition, however, cannot provide a unique disper-
sion model in three dimensions. Dreeben and Pope(1997,
1998) proposed a Lagrangian stochastic model for the calcu-
lation of turbulent flow itself and successfully applied to tur-
bulent channel flow at row Reynolds number. In this study
we use the GLM (generalized Langevin model)(Haworth and
Pope, 1986) corresponding to the Isotropization of Produc-
tion Model (Pope, 1994) and the elliptic-relaxation methoad
to develop a new dispersion model which is applicable to
horizontally homogeneous boundary layer flow. The general
solution of the elliptic relaxation is not trivial, but the ap-
proximate solution under the self-similarity assumption for
the near-wall turbulence is easily attainable. A further appli-
cation of the self similarity significantly simplifies the model
by yielding constraints for the model constants, resulting in
a simple dispersion model in closed form. The performance
of the proposed model is examined through comparison with
experimental data by Raupach and Legg (1983) and predic-
tions of other models.

DISPERSION MODEL

Generalized Langevin Equation
The Lagrangian particle velocity U; is decomposed into
its mean and fluctuating component

U; = (Ui) + ug (1)

where (-) denotes the Eulerian mean at particle position.
For infinitesimal time increment dt, each particle’s position
X;(t) evolves according to

dX; = U;dt (2)

In high Reynolds number flow, viscosity of fluid can
be neglected. Hence, The generalized Langevin model of
Haworth and Pope (1986) specifies velocity of modeled par-
ticles,

du; = Gijujdt + v/ Coe dW; (3)

where dW; is an increment of the Wiener process with zero
mean and variance dt. Cy, ¢ are Kolmogorov’s constant and
mean dissipation rate, respectively. It should be noted that
the model equation is for the fluctuating component rather
than the total Lagrangian particle velocity. The anisotropic
effect is incorporated into the model by modeling of the drift
term Gy; (Dreeben and Pope, 1998):

Gy = 212k @

k

Here, k denotes turbulent kinetic energy. In this study, the
nonlocal effect near the wall is realized by the elliptic relax-
ation model of g;;:

gij — L*7P79V - [LPV(Ligy;)] = 757 ()
where g;; is the local model specified by

O(Uy)

Ty

—__1-C

Gij = ——5—ebij + kHijp (6)
where C} corresponds to the model constant from Rotta’s
Return-to-Isotropy model if the second term is absent and
H; iy denotes a fourth-order tensor representing anisotropy
of Reynolds stress,

1 1
Hijp = (C2 + 575)5ik5jz - 5’7551‘15]‘19 +¥sbik it — vsbiydjx
(7)
where C2 and +«y are the model constants for the Isotropiza-
tion of Production Model(IPM) and b;; is anisotropy tensor
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defined by.b;j = (uiu;)/(ugur) — di;/3 and the length scale
is specified by
k3/2
L=C,— (8)

Solution of Elliptic Relaxation

gi; is a solution of an elliptic differential equation and it
is generally costly to find a solution in a domain with arbi-
trary boundaries. In the boundary layer flow, however, the
self-similarity assumption can greatly simplify the solution
procedure. Furthermore, the effect of viscosity is not con-
sidered, thus eliminating the singularity at the wall. The
consequence of this is that the boundary condition is not
necessary and only the particular solution of Eq. (5) needs
to be considered. The assumption we make is that turbulent
statistics near the wall are self similar which implies

W) = T (9)
uS
ey} = ;;; (10)
(w?) = a®u2, (¥ = b}E, (whH=ckl  (11)
'(uv) = —'u,?. (12)

where y and u, denote the distance from the wall and the
wall-shear velocity, respectively. u,v and w is the stream-
wise, wall-normal and spanwise velocities, respectively. « is
von Karman constant and yg is the roughness length scale.
The constants are a = 2.5,b = 1.25,¢ = 2.0,5 = 0.41 . Then
Fi; ~ 1/y and L ~ y, resulting in closed form solution for
9ij»

9ij
9ij = ;2] (13)
with
2 o fa?+b2+c? :
R=1-Cpr" | — (g~-Dp+q-2) (14)

This means that the nonlocal modification is equivalent to
a simple rearrangement of the model constants. Note that
when ¢ = 1 or p+ ¢ = 2, the nonlocal effect vanishes. We
set p to 0 and q to 1. Consequently, R = 1 and g;; has the
same form as the local model.

9ij = Gij (15)

Constraints for Model Constants
GLM can be written for the modeled Lagrangian velocity
u*:

du] = Gyjujdt + / CoedW; (16)

Here, Gi; and e are specified by the self-similarity condi-
tions Egs. (9) ~ (12). Therefore, the modeled Reynolds
stresses should satisfy this self similarity. Multiplying (16)
by velocity component and using the Ito calculus yield

d(u,-u]-)* _

& Gik(ujuk)* +ij(uiuk)* +C06(5,‘j (17)

where {uju;)* denotes the modeled Reynolds stress. Note
that Eq. (17) does not contain the production term. The
reason for this is that the total Lagrangian velocity is not
considered in the present Lagrangian model and the inhomo-
geneity of the mean flow is not explicitly taken into account.

Table 1: Constraint of constant

fixed quantity Constraint
2
(u?), (v*) C = ;g—z'co, Cr=-(=z - 1)%Q
(uv), (v?) C = ’bQ_Q'CO, Cy = 314—00
For the self similarity, (u2)* = (u?), (v?)* = (¥2), (uv)* =
{uv), yielding the following constraints:
da({Uu
—lcle(uz) +2C, ( >(uv) +Coe = 0 (18)
k dy
—%Cle(vz) +Cee = 0 (19)
( Y2y —
——Cle(uv) +Cy— (v y = 0 (20

It should be noted that s vanishes during opertaion, sug-
gesting that the role of v5 is not redistribution between the
Reynolds stresses. Investigation reveals that vs is strongly
related to the rotational property of particle motion. Egs.
(18) ~ (20) do not uniquely determine the model constants
Cp, C1 and Cq except the trivial solution, Co=C1=Cy =
0. Therefore the present model is incomplete in terms of the
model constants. However, if we relax the constraint, a par-
tially complete model can be derived. This can be achieved
if we select only two quantities among three stresses which
are maintained to be the same as the given values. For ex-
ample, the resulting expressions between Co, C1 and C; for
two choices of fixed Reynolds stresses are listed in Table 1.
Satisfaction of these constraints, however, does not guaran-
tee that the desired Reynolds stresses remain to be the same
values as the given ones. Let us assume the model satisfying
(v2)* = (v}, (uv)* = (uv), then

1 2 Uy
= * 420
% Cre(u®)* 4 2C2 dy

(uv) + Coe

s S H w2y -ty = ocen

1
——016(1}2> + Cope
Y ’75 2, &{U)
( >( %) - 2% )—d‘—
Y
X((uz) -(@?)) = 0(23)
Since (u?)* # (u?) generally, (uv)* cannot remain the same
as the prescribed value. The only way to resolve this is to

set v5 = 0.
Another combination is (u2)*

( )

0(22)

il

—-I;Cle(uv) +Cy

= (“2)>(1’2>* = (v?), then
—;Clduz) +2C,—+ (uv) + Coe

s ‘“ ”“’)((uv) (W) =0 (24)

k
~1C1els?) + Coe - 75%2‘1%’«%)* () =0 (@)

_%Cle(uv) +C'2d( )(u2) 0 (26)

Unlike the first choice, the consistency cannot be satisfied
even with the enforcement of vs = 0. Therefore, we consider
the first case only in our study. From this, we obtain a
dispersion model in very simple form.

du

i

(——1-Cleu + Co UU) v) dt + +/ Coe dW1(27)
2k dy

dv

——;—kcle’v dt + v/ Coe dWo ) (28)
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Figure 1: Dimensionless  error  defined by

f [(uiuj) - (’lli’ll:j)ezact]2 dy/f<uiuj>§zact dy

——o—— Our model

4 Th dal

L]
——o0—— K-S model
-u,/x In((y+y,) 1y,)
1 1

1 2 3 4 5

Figure 2: A comparison of mean velocity of three models
with log mean velocity profile = In ﬁ%

with the relation between Cp,C; and C, as listed in the
last row of Table 1. Note that constants C1,Cs are func-
tions of Co which is only one remaining model parameter.
To numerically ensure that the desired Reynolds stresses be
maintained to be the given values, the error of the computed
stresses is shown in terms of Cp in Fig. 1. As expected,
the error for the wall-normal and shear components remain
small, whereas the streamwise component shows large error.
In the investigated range of (g, the behavior of the error
suggests the existence of an optimum value of Cy. From the
performance of the model in dispersion prediction, the op-
timum value turned out to be 4, for which the errors for all
three Reynolds stresses including the streamwise component
remain reasonably small.

DISPERSION RESULTS

In this section we present results for dispersion of our
model and other known models with experimental data of
Raupach and Legg (1983). In the experiment, the line source
heating was used to simulate concentrated source. Equations
(2,27,28) are numerically integrated by using the 3rd-order
Runge-Kutta scheme, with a varying time step At = ary,,
where 71, = 24/(v)2/Coe is the Lagrangian time scale. For
the numerical stability and to avoid singularity at the wall,
@ = 0.02 was sufficient (Kurbanmuradov and Sabelfeld,
2000). The elastic reflection boundary condition is used
when a particle hits the wall. In this paper, for the best
model performance we set Cy to 4 for our model. Compared
models are the models by Kurbanmuradov and Sabelfeld
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Figure 3: A comparison of Reynolds stress of our model with
other model at z/hs = 30.

(2000) (K-S model) and by Thomson (1987). We set Cp = 4
for K-S model, Cp = 5 for the Thomson model. In Fig. 2
the computed ensemble-averaged velocity profiles at down-
stream location x/hs = 30 are plotted against dimensionless
wall distance y/hs, where hs is the height of the source. All
models follow the exact mean flow very well with a slight
underprediction. We examine the normal stresses and shear
stress at the same downstream location in Fig. 3. Thom-
son’s model and K-S model produce (u?), (v2) and (uv)
qualitatively well. Our model shows a large discrepancy in
the (u2) which is expected. However, (v2) and (uwv) show
good agreement with the exact value.

In Fig. 4, the normalized mean concentration, ¢/c*
at several downstream locations, z/hs = 2.5, 7.5, 15, 30
are illustrated. Here, ¢ is the mean concentration and
¢* = Q/(hs(U(hs))) where Q is the line source strength per
unit length. Right after the particles are released, the pre-
diction by all models is excellent in terms of the peak value
and position. At x/hs = 7.5, however, all models slightly
overestimate the concentration and the peak of concentra-
tion is slightly different from the measurement. Our model
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Figure 4: Dimensionless concentration ¢/c* at four locations:

compared with experimental data (Raupach and Legg, 1983)

and K-S model outperform the Thomson’s model in terms
of the peak value and near-wall concentration, but differ-
ences are minor. At z/hs = 15, all tested models exhibit
excellent performances. At z/hs = 30, however, all mod-
els underestimate the concentration near the wall. Overall,
the performance of the tested models for concentration is
excellent.

In Fig. 5, the normalized horizontal flux (=uc’/u,c*)
for each model is illustrated with the experimental data.
Despite a poor estimation of (u?), our model’s prediction
for the horizontal flux is relatively good compared to other
models. Thomson’s model and K-S model have shown a very
similar behavior in the prediction of the Reynolds normal
stresses but their horizontal flux are significantly different.
Unexpectedly, our model’s result is very close to Thomson’s
model. The vertical fluxes are plotted in Fig. 6. Although
all models show good agreement with the measurement at
all position, our model slightly outperforms other models,
specially at z/hs = 15.

CONCLUSION

A new Lagrangian dispersion model based on the Gener-
alized Langevin Model corresponding to the Isotropization of
Production Model is constructed under physically plausible
assumptions. We use the elliptic-relaxation to incorporate
anisotropic effect into the GLM. Using the self-similarity and
analytical solution of the elliptic-relaxation, the model pa-
rameters of the present dispersion model are expressed in
terms of Cy. However, the streamwise Reynolds stress of
the computed velocity is not maintained to be the same as
the prescribed value due to the inconsistency nature of our
model. Despite this inconsistency, our model shows good
agreement with the experiment results in the prediction of
concentration and fluxes.

0.2 * 0.3 0.4
Dimenslonless Concentration
(a) x/hs= 2.5; (b) x/hs= 7.5; (c) z/hs= 15; {d) z/hs= 30
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