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INTRODUCTION

It is important in engineering to clarify the passive scalar
diffusion mechanism in turbulent shear flows in relation to
the mixing of various fluids and the diffusion of pollutants.
Although there are many reports about the measurements of
scalar, for example, the temperature difference (Chevray and
Tutu,1979, Venkataramani et al.,1975, Browne et al., 1984,
Zhu et al .,1988), the concentration of gas (Panchapake-
san and Lumely,1993) and the concentration of dye solution
(Okada et al.,2001), there still remain the unclear points
on the statistical characteristics of scalar (for example, the
departure from the local isotropy and the internal intermit-
tency (Warhaft,2000)). In this study, as the fundamental
reseach on the passive scalar diffusion in a turbulent flow,
the measurements of the instantaneous value of scalar {con-
centration) at one point in a liquid phase turbulent jet have
been made by using the fiber optic concentration sensor,
and the distributions of the various scalar statistics obtained
from the recorded data were investigated.

EXPERIMENTAL APPARATUS AND CONDITIONS

In this study, the axisymmetric turbulent jet was adopted
as a fundamental turbulent shear flow, and the dye of large
Schmidt number, which is called C.I.Direct Blue 86 {(Schmidt
number Sc = 3, 800), was chosen as a diffusing matter. Fig-
ure 1 shows a water channel used in this study. The test
section of this channel has a height of 250 mm and a width
of 250 mm and the water level is ajusted to 200 mm. The
nozzle exit for the jet of the dye solution is 106 mm under
the water surface, and located in the center of a channel.
This nozzle’s exit diameter D is 2.00 mm and the area of
the cross section is 3.142 mm?. The initial concentration
Cj is 3.0 g/l and Reynols number Re = U;D/v is about
11,000. The origin of the coordinate system is located at
the nozzle exit, and x is the axial coordinate and r is the
radial coordinate (see Fig.1).

The concentration of the diffusing matter was measured
by the light absorption method (The concentration detect-
ing method based on the Lambert-Beer’s law : Nakamura
et al.,1983). A optical fiber probe is shown in Fig.2. As a
light source, we chose a laser diode with a standard oscilla-
tion wavelength of 670 nm since the light of this wavelength
is efficiently absorbed by the present dye whose absorbance
spectrum shows the maximum around the wavelength of 665

nm. The optical fiber has the outer diameter 0.25 mm and .

the core diameter 0.01 mm. In the test section the gap be-
tween two optical fibers is about 0.6 mm and the control
volume is 4.71 x 10~% mm3. Here we should note a rela-
tion between the scales of the turbulent field and the space
resolution of the probe. As the micro length scales of the

turbulent field, there are the Taylor length scale A and the
Kolmogolov length scale 7, and they are approximated by
the following equations (Friehe et al.,1972).
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At z/D = 30, the Taylor length scale A is 0.50 mm and the
Kolmogolov length scale 7 is 0.03 mm, so that the resolution
of the present fiber optic probe is considered to be the same
order as the Taylor length scale.

Figure 1: Water channel and coordinate system.
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Figure 2: Optical fiber probe.

RESULTS

Fundamental characteristics of the concentration field

The mean concentration. Figure 3 shows the downstream

—335—



variation of the mean concentration C along the jet center-
line. The abscissa is the downstream distance z normalized
by the nozzle exit diameter D and the ordinate is the mean
concentration Co normalized by the initial concentration
C; and its inverce Cy/C¢. From the figure, it is found
that Cj/Cc¢ increases linearly in the downstream direction
at /D > 10 so that the mean concentration is in inverse
proportion to downstream distance. The inverse of mean
concentration Cj/C¢c by the least square approximation is
given by

Cy z
—= = 0.190— + 0.735. 3

Figure 4 shows the radial profiles of the mean concentra-
tion C. The abscissa is the radial distance r normalized by
the half width of the mean concentration profile and the
ordinate is the mean concentration C normalized by the
mean concentration on the centerline Cy. The profile of
the mean concentration shows a good similarity in the re-
gion of /D > 30. Although there is some deviation in the
outer region, they are well approximated by the Gaussian
curve.

Figure 3: Downstream variation of the mean concentration
along the jet centerline.
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Figure 4: Radial profiles of the mean concentration across
the jet.

The concentration fluctuation r.m.s. value. Figure 5
shows the downstream variation of the concentration fluctu-
ation r.m.s. value ¢/. The ordinate shows the concentration
fluctuation ¢, normalized by the initial concentration Cj
and its inverce Cy/cy .. From the figure, we found the con-
centration fluctuation cf; is also in inverse proportion to the
downstream distance like the mean concentration C¢. The
inverse of the concentration fluctuation Cj/c; by the least

square approximation is given by

9 _os12Z 41011 (4)
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Figure 6 shows the radial profiles of the concentration
fluctuation r.m.s. value ¢’. The ordinate is the concentra-
tion fluctuation r.m.s. value ¢’ normalized by the value on
the centerline ¢f,. Although some scattering is observed in
the outer region, it shows a good similarity in the region of
x/D > 30, and they have a peak at r/bc =~ 0.9.
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Figure 5: Downstream variation of the concentration fluctu-
ation r.m.s. value along the jet centerline.
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Figure 6: Radial profiles of the concentration fluctuatio
r.m.s. value.

Caracteristics of the concentration probability dencity func-
tion (p.d.f)

Downstream variation of the concentration p.d.f.. Fig-
ure 7 shows the downstream variation of concentration p.d.f.
p(&), where c is the fluctuation component defined by ¢ =
& — C (& : concentration instantaneous value), and p(c) and
¢ are normalized by the concentration fluctuation ¢’ respec-
tively. The solid line in the figure represents the Gaussian
curve. The distribution of the concentration p.d.f. shows a
good similarity in the region of x/D > 30. However, they
deviate from Gaussian distribution and are skewed in the
negative side, i.e., they tend to have a long tail in the nega-
tive direction.

The skewness and the kurtosis of the concentration p.d.f..
Figure 8 shows the downstream variation of the skewness S
and the kurtosis K of the concentration p.d.f. along the jet
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centerline. The skewness S and the kurtosis K are respec-
tively difined by

S = /_c:o *'3p(x) dz/ [/_c:o z'%p(z) dx] s , (5)

K= {/_o:o z"*p(z)dz/ [/_: a:’zp(x)dzr} -3, (6)

z' =z —p, p:the first order moment of p(zx).

When the p.d.f. shows the Gaussian distribution, the skew-
ness S and the kurtosis K are zero. In the present measure-
ments, the skewness S and the kurtosis K have apparantly
non-zero values. This is also clear from the distributions of
the concentration p.d.f. as shown in Fig.7.

Figure 7: Downstream variation of the concentration p.d.f.
along the jet centerline.
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Figure 8: Downstream variation of the skewness and kurtosis
of the concentration p.d.f. along the jet centerline.

Orthogonal expansion of the p.d.f.. It is known that the
p-d.f. slightly deviated from the Gaussian distribution can
be expressed by the Gram-Charlier series (Hino,1977), which
is a kind of orthogonal expansions. Here we try to express
the concentration p.d.f. by the Gram-Charlier series. The
Gram-Charlier expanssion for the concentration p.d.f. p(¢)
is defined by

P& = a0d(6) + 1O + 24" © -, (1)

where £ is { = (- C)/c’, ¢(£) is the normal Gaussian p.d.f.
and ¢(*)(¢) is the nth order derivative of (&), which is given
by

™ (&) = (=1)"Hn(€)$(8). (8)

In Eq.(8), Hn(¢) is the Hermite polynominal and has the
orthogonality as follows.

/ " Hon(€) Ha(€)0(E) d€ = brun(€)

_ {m! (m=n)

0 (m#mn) ©)

And the coefficients up to the 6th order of Eq.(7) are defined
by

_ B

_ _ _ k3
ao=1,a1—a2—0,aa——c,—3704—a,—4—3,
_ B B3 pe Ha
a5_—cl—5+10;,—3,a6_c—,g—15zl—z+30, (10)
where the nth order moment is defined by
oo
wn= [ epieae. (11)
-0

Figure 9 shows the concentration p.d.f. obtained by the
Gram-Charlier expansion up to 6th order on the jet center-
line at /D = 50. From figure, we find the p.d.f. obtained by
this orthogonal expansion agrees well with the experimental
p.d.f..

Figure 9: Gram-Charlier expansion of the concentration
p.d.f. on the jet centerline at z/D = 50.

Random dilution amount model. From the above data
analysis, it was found that the concentration p.d.f. on the
jet centerline has the skewed distribution. In the plume dif-
fusion field, Csanady (1973) suggested the random dilution
model which leads to the log-normal distribution. Here we
considered the application of this model to the concentra-
tion p.d.f. in the jet diffusion field. Firstly we noticed that
the sign of the skewness of the concentration p.d.f. in the
jet diffusion field is opposite to the one of the log-normal
distribution. Consequently, as a new variable the concentra-
tion defect é¢ = C; — & was introduced. Here the fluctuation
component of ¢ is defined as é4 (64 = € — C‘, € : the mean
of the concentration defect). Then the p.d.f. for é; was
calculated and compared with the log-normal distribution.
The result was shown in Fig.10. From the figure, it is found
that the p.d.f. for é; shows a good agreement with the log-
normal distribution. Therefore, in this study, we will suggest
a new random dilution model for the concentration defect é.
Since the concentration defect é means the dilution amount
of matter in the lump of fluid, this model is called the “ran-
dom dilution amount model” from its physical meaning.

Figure 11 shows the dilution process of the concentration
defect by the random dilution amount model. This dilution
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process is based on an usual binomial multiplicative process
(Feder,1988) and on the line segment the amount of con-
centration defect ¢ = Cj — ¢ is assigned as measure. The
dilution amount coefficient 8 is a random variable which is
B > 1 and this is expressed as §;;,1i=1,2,---,n;j=1,2.
It is assumed that §;; has the same probability ditribution
regardless of ¢,j. When an initial amount of concentration
defect is ép = 1, the concentration defect in the first cell
after n steps is given by

én=Cy —&n=P11P21 - Pr-1,1- (12)

Moreover, taking the logarithm of both sides, we obtain the
following equation,

Iné, =Infi1 +1nfoy +-----Infnoy,1. (13)

Since Inpfh1,InfB1,- -, InBr_1,1 are random variables
which have the same probability characteristics, when = is
fully large, by the central limit theorem the probability den-
sity for é, = ( after n steps is approximated by

1 (ln(—ln(c)z}
n = ex - 3 14
pol0) = e {4 (19
where both (. and o-are the functions of n, and given by
In¢. = nE(In §i;), (15)
o =+/no;j, (16)

where §3;; is the dilution amount coefficient at each step,
E(*) is the expectation and o;; is the standard deviation
of IngB;;. Since each step is assumed to follow the same
probability distribution, E(In 8;;) and o;; are expected to
keep constant values independent of i,j. By using Eq.(15)
and (16), Eq.(14) is written as

1 [In¢ — nE(ln §;;)]?
CoiV2mn P {_ 2(o;;v/n)? ’ } - 49

Hence, we find that the p.d.f. of concentration defect é, = (.
becomes the log-normal distribution.
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Figure 10: Comparison of the concentration defect p.d.f.
with the log-normal distribution at z/D = 50.

Radial variation of the concentration p.d.f.. Figure 12
shows the radial variation of the concentration p.d.f. p(¢&)
at /D = 50. Although a smooth distribution can be ob-
served around the jet centerline, the large peaks appear at
the outer region because of intermittency of the concentra-
tion detection/nondetection. It is found that the value of
peak became large as the increase of radial distance.
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Figure 11: Random dilution amount model on the basis of
the binomial multiplicative process.
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Figure 12: Radial variation of the concentration p.d.f. at
z/D = 50.

Radial profiles of the intermittency factor

Firstly, we explain about the method to determine the
intemittency factor (the Gaussian fitting method, Bilger et
al.,1976). For the concentration measurement, the events of
detecting and nondetecting the concentration are mutually
exclusive. Therefore, the concentration signal can be dev-
ided into two regions, i.e., the concentration detecting region
and the concentration nondetecting region. Then the ideal
p.d.f. p(¢) is written as follows,

p(&) = (1 — 7)ps(E) +vp:(8), (18)

where p¢(é) is the p.d.f. for the concentration detecting
region and py(&) is the p.d.f. for the concentration non-
detecting region. Now, when we define the p.d.f. of the
noise signal as pn (€), the acutually measured p.d.f. pm(€) is
written by the convolution integral as follows,

m@=  pa@— D)1 - Vps(©) +1pe(D)]dg.  (19)

If the p.d.f. for the concentration nondetecting region p(é)
is the delta function §(&) and the noise signal p.d.f. p,(¢) is
the Gaussian distribution with standard deviation g, pm ()

is rewritten as
62
pm(@) =~ L ox [’_,,]
o PEERAY)

The first term on the right hand side in the above equation
means the contribution of the nondetecting region, therefore
we can get the intermittency factor -y by fitting the Gaussian
curve to the p.d.f. distribution around ¢ = 0.

Figure 13 shows the radial profiles of the intermittency
factor v obtained by the above method. Here the abscissa
is the radial distance r normalized by the half width of the
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radial profiles of the intermittency factor br. In the fig- 1 i ' J
ure, the solid line represents the result by Shaughnessy et al 3
(1977). and broken line represents the result by Chevray et & 0.8 7
al. (1978). It is found that the present slope of decrease of $ 0 6; o k=4.0
the intermittency factor is larger than the other results. gl —=50
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Threshold level method. To obtain the conditional statis-
tics, It is necessary to determine the threshold value for
dividing between the detecting region and the nondetect-
ing region. In this study, the threshold value is détermined
by comparing the intermittency factor obtained from the in-
termittency function with the one obtained by the Gaussian
fitting method. This method was developed by Nakamura
et al. (1999). Here, this method is summarized.

Firstly, the intermittency function is constructed from
the discretized concentration signal by giving a threshold
value S, as follows,

v

i =1, if &>8
A oGz (21)
; =0, if ¢ <8.
Then the threshold value is given by
S = kon, (22)

where k is an arbitrary positive real number and 0 is the
standard deviation of the noise signal. k is determined so
that the radial profiles of the intermittency factor by the
threshold level method will be in agreement with those by
the Gaussian fitting method. Figure 14 shows the change of
the radial profile of the intermittency factor -y at z/D =50
with the variation of k. Here, the abscissa shows the radial
distance r normalized by the half width of the radial profiles
of the mean concentration bo. From the figure it is found
that the profile of & = 5.0 agrees with the profile obtained
by the Gaussian fitting method. Therefore, in this study,
k = 5.0 is adopted as the threshold value.

Conditional mean concentration. Figure 15 shows the ra-
dial profiles of the conditional mean concentration (C) with
the conventional mean concentration C. The ordinate is
the conditional mean concentration (C) normalized by the
conditional mean concentration on the centerline (C)e. As
the increase of radial distance, the conditional mean concen-
tration tends to approach to a constant value((C)/(C)o ~
0.15).

Figure 15: Radial profiles of the conditional and conven-
tional mean concentration.

Conditional concentration fluctuation r.m.s. value. Fig-
ure 16 shows the radial profiles of the conditional concen-
tration fluctuation r.m.s. value (c’) with the conventional
concentration fluctuation r.m.s. value ¢’. The ordinate
shows the conditional concentration fluctuation r.m.s. value
{¢’) normalized by the value on the centerline (c')¢. From
the figure, it is found that although there is some scattering
in the outer region, the conditional concentration fluctuation
also tends to approach to a constant value({c')/{c')c ~ 0.4)
as the increase of radial distance.
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Figure 16: Radial profiles of the conditional and conven-
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tional r.m.s. value of the concentration fluctuation.

Conditional concentration p.d.f.. Figure 17 shows the ra-
dial variation of the conditional concentration p.d.f. p*(&).
In the outer region, the magnitude of peak near & = 0 is
relatively smaller than the one of conventional concentra-
tion p.d.f. p(¢) (see Fig.12), but the peak still exists. In



the region where the intermittency is high, it is known that
the conditional p.d.f. p*(é) becomes an exponential simi-
larity distribution which is given by the following equation
(O’brien,1978).

p*(2/(C)) = exp(—E/(C)) (23)

In this study, the exponential distribution could not be ob-
served since the intermittency is low.
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Figure 17: Radial variation of the conditional concentration
p.d.f. at /D = 50.

CONCLUSION

1. In the jet diffusion field of the dye solution, the con-
centration p.d.f. near the jet centerline could be ap-
proximated by the Gram-Charlier series expansion.
However, to obtain the good approximation of the
p.d.f. by the Gram-Charlier series expansion we need
the moments of scalar fluctuation up to 6th order or
higher. Consequently, it becomes practically very diffi-
cult to obtain the concentration p.d.f. from the Gram-
Charlier expansion by the numerical simulation. In
this study, a new dilution model for the amount of the
concentration defect (which is called the “random dilu-
tion amount model”) was suggested, and it was shown
that the p.d.f. for the concentration defect obtained by
this model becomes a log-normal distribution, which is
in good agreement with the experimental p.d.f. for the
concentration defect. Since the log-normal distribution
can be determined by the moments up to the second-
order, the present random dilution amount model is
very effective to predict the concentration p.d.f. by
the numerical simulation.

2. The conditional mean concentration (C) and the condi-
tional concentration fluctuation r.m.s. value (¢/) tend
to approach to constant values as the increase of radial
distance.
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