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ABSTRACT

One-point acceleration properties are studied for inhomo-
geneous pipe flow using a direct numerical simulation. The
acceleration is decomposed using the Navier-Stokes equa-
tions. In general, similar behavior is observed for variances
of the acceleration components, probability density func-
tions of the pressure and its gradient, and geometrical align-
ment as in incompressible, isotropic turbulence (Tsinober et
al. Phys. Fluids, Vol. 13 (7), 2001). A question which
requires further investigation is whether discrepancies from
isotropic results are caused by the inhomogeneity of the flow
or by the small value of the Re~number.

INTRODUCTION

During the last decade much effort has been spent to de-
scribe turbulent transport in a Lagrangian framework. This
approach could be of great help to understand for example
turbulent dispersion and mixing of passive scalars or con-
taminants. In the Lagrangian case the time evolution of
marked fluid elements (viz. fluid-particles) which follow the
motion of the fluid is recorded. This is in contrast with a
Eulerian description where the turbulent flow is described
at fixed points in space and time. Stochastic models try
to simulate this evolution of fluid particles under the as-
sumption that the Reynolds number is high enough so that
there is a distinct separation between the smallest scales of
the flow and the large, energy containing scales. In this
case the fluid particle acceleration can be modeled using a
o-correlated Markov process. Closely related to Lagrangian
modelling of dispersion is the material derivative of the ve-
locity vector which, using the Navier-Stokes equations, can
be written as
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Several physical issues in turbulence based on this de-
composition of the acceleration vector have been studied.
However, this has only be done for isotropic turbulence. The
sum of pressure gradient and the viscous part should equal
the sum of the local acceleration and convective acceleration.
Using the notation introduced by Tsinober et al. (2001}, we
can also write @ = ar + ac = a; + ag, where ap, = du/ot,
ac = (u-Viu, ar = —V(p/p) and as = vV23u. Accord-
ing to Monin and Yaglom (1975) the total acceleration a
is largely dominated by the irrotational pressure gradient
and the solenoidal viscous part is small. On the other hand
Tennekes’ hypothesis assumes that the total acceleration a

is small compared to the local and convective accelerations
and hence a; and ac are strongly negatively correlated.
These findings where later confirmed by DNS results of in-
compressible, forced, isotropic turbulence (Tsinober et al.,
2001, Vedula and Yeung, 1999). How all these findings
relate to inhomogeneous turbulence is yet unknown. Our
primary interest in this article is to investigate the various
contributions to the acceleration term obtained from DNS
of inhomogeneous pipe flow and to compare the results with
those obtained from isotropic turbulence.

The remainder of the article is organized as follows.
First, the numerical method and performed calculations are
explained. In the subsequent section we will show the DNS
results at two different Re—numbers for the various contri-
butions to the total acceleration. Single-point variances and
geometric statistics of vector alignment as well as PDF’s of
the various terms and pressure are shown. Finally, conclu-
sions are summarized.

NUMERICAL METHOD AND GOVERNING EQUATIONS

In this section the numerical method used for DNS of
turbulent flow in a cylindrical pipe will be described. In
rotational form the continuity and Navier-Stokes equations
are given by
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where u is the velocity vector, P is the total pressure defined
as P = p+ u?/2, where p is the static pressure, w = V X
u is the vorticity vector, f is a forcing term and v is the
kinematic viscosity.

To solve equations (2) and (3) numerically, essentially
the same method is used as discussed by Shan et al., 1999.
Because of the cylindrical geometry the choice for cylindrical
coordinates and cylindrical velocity components is natural.
The equations have been non-dimensionalized by the radius
of the pipe R, the kinematic viscosity v and the bulk velocity
upg. The Reynolds number is defined as Re = up D/v where
D is the diameter of the pipe. A finite part of a the pipe of
length L is considered using periodic boundary conditions in
the axial direction. Combined with the natural periodicity
in the tangential direction there are two periodic directions
and the choice for a spectral method is obvious. In the radial
direction an expansion based on Chebyshev polynomials is
used. However, the distribution of the Gauss-Lobatto collo-
cation points leads to very small cells near the pipe axis and
thus necessitates the use of very small time steps. Therefore,
the radial direction is divided into several elements and in
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each element an expansion into Chebyshev polynomials is
adopted. At the interfaces between the elements the solu-
tion is required to be C1. Each velocity component and the
pressure are thus expanded as:
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with a = My/2 — 1 and b = M,/2 — 1, where My and
M, are the number of Fourier modes in tangential and
axial direction resp. In this way a hybrid method ap-
pears: Fourier-Galerkin in the two periodic directions and
Chebyshev-collocation in the radial direction. Derivatives in
the periodic directions can easily be calculated in spectral
space, whereas derivatives with respect to r follow from the
Chebyshev derivative matrix (see Canuto et al., 1988). The
division of the radial direction into elements makes it possi-
ble to reduce the number of Fourier modes in the tangential
direction in the element containing the axis of the pipe. This
mode reduction does not influence the global accuracy of the
method and the corresponding increase in grid size alleviates
the time step restriction (see Loulou, 1996).

The Navier-Stokes equations are integrated in time using
a time-splitting method by Karniadakis (1991) Schemati-
cally the Navier-Stokes equation can be written as

Ou
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where N denotes the nonlinear terms on the left-hand side
of (3), L the viscous terms on the right-hand side and f the
forcing term. A second-order accurate time-splitting method
with constant time step At is then given by
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In these formulas the superscript denotes the time level. In
the first step the nonlinear terms are treated explicitly. The
products of vorticity and velocity are calculated in a pseudo-
spectral way, where fast-fourier transforms (FFT) are used
to transform from spectral to physical space and back. Alias-
ing is prevented by the 3/2-rule. This implies that before
transforming the solution to physical space extra Fourier
modes equal to zero are added in both directions. In each
dimension the total number of extra modes is the original
number divided by two. After transforming the products
back to Fourier space the extra modes are disregarded.

In the second step a Poisson equation for the pressure is
solved to ensure that the solution after the third step sat-
isfies the continuity equation. A point that requires special
attention in this step is the boundary condition for the pres-
sure at the wall of the pipe. Following Karniadakis (1991)
we employ at r = R
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where the solution at the new time level is found by linear ex-
trapolation from the solution at the two previous time levels.
In order to obtain a unique solution this boundary condition
cannot be used for the (ky, k) = (0,0) mode. Instead the
mean pressure at the wall of the pipe is prescribed. The

boundary condition for the pressure at the pipe axis follows
from the regularity of the pressure there: P =0 for kg #0
and &P /8r = 0 for kg = 0.

In the final step the linear, viscous terms in the Navier-
Stokes equations are treated implicitly. In cylindrical co-
ordinates the viscous parts of the equations for u, and
ug are coupled, but they can be decoupled by introducing
ut = urtiug. Moreover, the equations for different Fourier
modes are completely decoupled, so that a one-dimensional
equation for each Fourier mode and each velocity compo-
nent results. These one-dimensional problems are solved by
a direct method. At the wall of the pipe a no-slip bound-
ary condition is applied. At the pipe axis the boundary
conditions follow from the requirement that the Cartesian
velocity components are regular. This results in 4, = 0 for
kg # 0, 8ly/0r = 0 for ky = 0, iy = 0 for ky # F1 and
Oty /Or =0 for kg = FL.

Later on, we will present results for Reynolds numbers of
5300 and 10312 based on the bulk velocity and pipe diam-
eter D (or Re; = 362 and Re, = 647 resp.). For the lower
Reynolds number many experimental and numerical results
from literature are known (see e.g. Eggels, 1994, Eggels et
al., 1994, Loulou, 1996, Wagner, 2001 and Westerweel et
al., 1996). The length L of the pipe is taken L = 10 which
corresponds to 5D. The number of Chebychev points and
Fourier modes used in the simulation are (109x 128 x 128) for
resp. the radial, tangential and axial directions for the lower
Re—number and (151 X 256 x 384) for the higher Re—number.
The largest grid spacings in tangential direction are at the
wall due to the cylindrical coordinate system. In the ra-
dial direction the largest spacings are close to the center of
the pipe to prevent severe limits on the time step as dis-
cussed earlier. Table 1 summarizes the grid spacing values
expressed in wall units. This grid resolution is comparable
with other spectral simulations of wall-bounded flows (Moin
and Mahesh, 1998). Temporal correlation functions have
been validated with a calculation on a (172 x 192 x 192) grid
for the lower Re—number case. The differences in velocity
statistics between the two grids appeared to be negligible.

The calculation is started from a random field superposed
on an approximate mean field with the axial velocity com-
ponent given by a logarithmic velocity profile. The random
field is chosen in such a way that it satisfies the continuity
equation and that the lowest four Fourier modes in both pe-
riodic directions are unequal to zero. In the first time step,
scheme (4) cannot be applied since only one field is available.
A first-order time-splitting scheme is used instead. After a
large number of time steps a state of fully-developed tur-
bulence is reached. From that time onwards averaged flow
quantities can be calculated. The two simulations (Re, =
362 and Re, = 647) are run for 20t*, where t* = D/u.,
with fixed time steps At = 2.0 x 10~% and At = 1.0 x 10~*
resp., which leads to more than 100 statistically indepen-
dent fields for both cases. Averaging is performed over the
periodic directions and time. The code has been tested thor-
oughly by comparing statistical quantities like r.m.s. profiles
of velocity-, vorticity- and pressure-fluctuations, spatial and
temporal correlation functions, spatial velocity spectra and
the budgets of the turbulent kinetic energy equation with
experimental and numerical data of others. A comparison
of most of these statistics with available results from others
can be found in Kuerten et al. (2001).

SINGLE-POINT VARIANCES

In this section we study the components of the one-point



Table 1: Grid spacing expressed in wall units. Re, is based
on the friction velocity u,: Rer = urD/v

Re., Ar;tn.n Armas  RAGL .. Azt nt =~
362 0.11 4.03 8.89 14.10 1.58
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Figure 1: Acceleration variances normalized by (5)3/2 p-1/2
as function of the radius. Solid: radial component, dot-
ted: tangential component, dashed: axial component. Lines
without and with the markers are at Re- = 362 and
Re; = 647 resp.

acceleration variance scaled with Kolmogorov variables. In
isotropic, homogeneous turbulence statistical properties of
variables of interest can be obtained by averaging over time
and the complete computational domain. In inhomogeneous
pipe flow all statistical properties depend on the radius. A
problem that arises here is the definition of the Re—number
which will be addressed later. For now we will present all
results as function of the radius when appropriate. Since
there is a large mean flow the local and convective accel-
eration strongly dominate over the pressure gradient and
viscous term. Hence the mean flow contributions are sub-
tracted from the acceleration terms. Figures 1 and 2 show
ensemble averaged results for <a,%>, <a2c>, <a?> and <a§.>.
Since we are dealing with inhomogeneous flow the result is
plotted for every individual velocity component. For a more
quantified comparison Table 2 and Table 3 show the ratios
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Figure 2: Acceleration variance normalized by (5)3/ 2y-1/2
as function of the radius. Solid: radial component, dot-
ted: tangential component, dashed: axial component. Lines

without and with the markers are at Re, = 362 and
Re, = 647 resp.

between the components at a radial position of r/R =05
for Rer = 362 and Re, = 647 resp. Several aspects also ob-
served for isotropic turbulence (Tsinober et al., 2001, Vedula
and Yeung, 1999) can be observed. According to Tennekes’
hypotheses the total acceleration a should be small com-
pared to its local and convective contributions (ar and ac),
which on their turn should have variances close to each other.
The total acceleration should also be close to the contribu-
tion from the pressure gradient. The values for < a,2> are not
shown in the figure, but results from Tables 2 and 3 indeed
indicate that (a) = (a;). Tsinober et al. (2001) remarked
that since ay, which is irrotational, dominates over ag, a
should be nearly irrotational as well. On the other hand
ar, is solenoidal. In homogeneous turbulence irrotational
and solenoidal vectors are uncorrelated. They indeed find
no correlation between a and ar, even at very small values
for Taylor Reynolds number Rey (Rey = urmsA/v, where
A is the Taylor length scale). Our results clearly show that
a and ay, are no longer completely uncorrelated, due to in-
homogeneity. Since a = a;, + ac and a is small, ac and
ay, must cancel each other, i.e. they should be negatively
correlated. The correlation coefficient p(ar,ac) shown in
Tables 2 and 3 show a slight decrease towards -1 for the
radial and tangential component, but opposite behavior for
the axial component. Whether or not this is a low Reynolds



number effect is unclear at this moment. This opposite be-
havior of the axial component is also observed in Figure 2
for ag. The numerical values of around -0.7 for p(ar,ac)
are relatively far from the values found by Tsinober et al.
(2001). They find a value of approx. -0.9 at their highest
Reynolds number.

Table 2: Ratios of variances of acceleration components and
correlation coefficients. The results are for a radial position
of r/R = 0.5 and at a Re—number of Re, = 362.

r ¢ z
a?) /(a3 0.9845  0.8585  0.8380
gazi / §a%§ 0.6011 05274  0.4510
(a2)/(a%) 06106 06143  0.5381
pla,ar) 0.1747 01245 -0.0111
pla,ac) 0.6388  0.6287  0.6797
plar,ac) -0.6460  -0.6934  -0.7410
(a?) / (a? 10125  1.0365  1.1127
a?) /(o 22.0145 20.5903  14.8064
§a§ /éag 21.7420 19.8657  13.3063
pla,ar) 0.9772  0.9754  0.9658
pla, as) 0.1356  0.1000  0.3249

r [ 4
a?y/(a2) 0773 07165 09588
a? /éa%) 0.4924  0.4539  0.5012
(a%)/{a%) 06365 06334 0527
pla,ar) 01152  0.0814  0.0234
pla, ac) 06098  0.6089  0.6910
plag,ac) -0.7170  -0.7410  -0.7064
(a®)/(a?) ~ 10208 1.0363  1.0592
a?y/(a%) 257806 24.8437  26.2856
2@% /éagg 25.2650  23.9732  24.8159
pla,ar) 0.9805  0.9797  0.9808
pla, as) 01501  0.1876  0.2409

GEOMETRICAL STATISTICAL PROPERTIES

In line with Tsinober et al. (2001) we will discuss here
alignment properties of a, ar, and ac and alternatively a,
a; and ag relative to each other. The notation 8(V1,Va)
is used for the angle between any two vectors V1 and V.
Due to the dependence of statistics on the radius we will re-
strict ourselves to one single radial position when convenient.
The cancellation between local and convective acceleration
indicates that these two vectors should be antiparallel, i.e.
the angle should be close to 180 degrees. This was already
confirmed by Tsinober et al. (2001) for isotropic turbu-
lence. In Figure 3 PDF’s for 6(ar,ac) (a) and also 6(a, ac)
and @(a,ar) (b) are shown for the two Re—numbers at
r/R = 0.5. The same is repeated in Figure 4 for the PDF’s
for 6(as,ag) (a) and also 8(a,a;) and 6(a,ag) (b). There is
indeed a large peak of the PDF of 6(ar,ac) close to 180°.
Although not as clear as in Tsinober’s simulations there is a
tendency for the angle to get more antiparallel with increas-
ing Re—number. Tsinober et al. (2001) simulated almost an
order of magnitude in the Taylor Re—number ranging from
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Figure 3: (a) PDF’s of 8(ay,ac) in degrees at Re, = 362
and Re, = 647 (solid and dashed resp.). The smaller figure
is the same but with a logarithmic scale. Figures are com-
parable with Tsinober et al. (2001). (b) PDF’s of 8(a,ac)
(lines incl. markers) and 6(a, ar) (lines without markers) at
Re, = 362 (solid) and Re, = 647 (dashed).

Re) = 38 to Rey = 243. In our simulations there is merely a
factor 1.9 in Re—number range. The trend with Re—number
is also not very clear in Figure 5 where the mean values of the
cosines of the angles between a, ar, and ac and a, ay and
ag as function of the radius is given. The anti-alignment be-
tween ar, and a¢ does slightly increase to approx. -0.6, but
is still far from Tsinober’s values of around -0.8 at their high-
est Rey—number of 243. Figure 5 also shows that all angles
exhibit a constant, or nearly constant, behavior over a large
range of the radial coordinate. Only in the near-wall region,
there is deviation from constant behavior. Here, cos(a, ar),
cos(a, ac), cos(a, as) and cos(ac, ar) all go to zero. Near
the wall all components of the velocity tend to zero. How-
ever, as the convective terms scale with u?, they tend to zero
faster than the local acceleration. Hence, close to the wall
the total acceleration is dominated by local acceleration and
cos{a,ar) goes to unity. On the other hand a = a; + as
and ag is unequal to zero at the wall, since 8%u/0r? # 0.
This implies that the pressure gradient is unequal to zero as
well and cos(ajy, as) — —1.

Figure 3(b) shows that a is positively aligned with ar, and
ac. There is hardly any Re—number dependence for both
68(a,ac) and 8(a,ar). However, this is probably due to the
slight increase in Re—number since Tsinober et al. (2001)
found that the alignment of @ and a¢ decreases significantly
at higher Re—number. In agreement with their results is
the lack of Re—number dependence for the alignment of a
with az. They find a nearly constant mean angle between
the vectors a and ar over the whole Re—number range of
approx. 0.1. Our results give a constant, but much higher
value of approx. 0.25. This is easily seen in Figure 5.

In Figure 4 similar information is shown as in Figure 3,
but for the vectors a, a;y and ag. The outcome is com-
parable with results for isotropic turbulence. The PDF of
8(as,ag) is relatively flat, meaning that there is no pref-
erential alignment between these two vectors, and has no
Re—number dependence. Since {(a) ~ (ar) it is expected
that a is almost aligned with ay and less so with ag. This
is illustrated in Figure 4(®) and in agreement with Tsinober
et al. (2001).
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Figure 4: (a) PDF’s of §(as, ag) in degrees at Re, = 362 and
Rer = 647 (solid and dashed resp.). (b) PDF’s of 6(a, a;)
(lines incl. markers) and 6(a, ag) (lines without markers) at
Rer = 362 (solid) and Re, = 647 (dashed). The smaller
figure is the same but with a logarithmic scale.

Figure 5: Mean values of the cosines of the angles between
a, ar, and ac and a, ay and ag as function of the radius.

PROBABILITY DENSITY FOR PRESSURE

The standardized, i.e. scaled with its variance, one-point
pressure PDF is shown in Figure 6. The plot is in a semi-
logarithmic scaling to observe the behavior in the tails. The
solid line represents the result at the lowest Re—number
and the dotted line is the result at the higher Re—number.
Both results are at a position r/R = 0.5. Figure 7 essen-
tially shows the same results, but now only for the higher
Re—number at three radial positions. The pressure PDF is
negatively skewed (Cadot et al., 1994). For isotropic tur-
bulence the shape of the PDF for positive fluctuations is
close to the Gaussian distribution. Vedula and Yeung (1999)
suggest that this part could also be described by exponen-
tial decay. That would mean in this semi-logarithmic plot
that this part follows a straight line. In our case, however,
the shape of the PDF for positive fluctuations clearly devi-
ates from Gaussian or exponential behavior. Also Cadot et
al. (1994), who performed experiments in a closed, stirred
cylindrical box, found a perfect Gaussian fit for positive pres-
sure. However, this was only observed for sufficiently high
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Figure 6: Base-10 logarithm of the standardized pressure
fluctuation PDF. Results are shown for r/R = 0.5. The solid
line is for Re; = 362 and the dashed line is for Re, = 647.
The smooth dashed line represents a Gaussian distribution.

Re—numbers. At lower Re—numbers they also find devia-
tions from Gaussian behavior. In regions close to the wall
(r/R > 0.9), the PDF starts to deviate from the PDF of
more inner regions as can be observed in Figure 7.

The shape of the PDF for negative fluctuations shows no
Re-number dependence. Vedula and Yeung (1999) find uni-
versal behavior for this part of the PDF. Furthermore, they
find exponential tails (i.e. straight lines) up to p/p’ ~ —10
for all Re—numbers. At around p/p’ & —13 the tail changes
shape by stretching more outwards. Our Re—number range
is too small to observe whether or not this phenomenon also
takes place for pipe flow, but an exponential decay is not
observed for the region —10 < p/p’ < 0.

The standardized PDF of the pressure gradient is shown
in Figure 8. Here, results for both Re, = 362 and Re, = 647
are included. To distinguish between the various compo-
nents, we use circles for dp/dr, squares for dp/d¢ and dia-
monds for dp/dz. The figure shown is at a radial position
of r/R = 0.5. There are small differences between the three
separate components. These differences become bigger in
the region /R > 0.9 (not shown here). There seems to be
no or very little Re—number dependence. This is in con-
tradiction with Vedula and Yeung (1999). As the Reynolds
number increases, their PDF stretches out towards larger
magnitudes of Vp. This is already observed are relatively
low Reynolds numbers.

SUMMARY AND CONCLUDING REMARKS

The various acceleration components in the Navier-
Stokes equations have been analyzed for inhomogeneous pipe
flow. Although there are many similarities with isotropic
turbulence, some differences can be observed as well. In view
of Reynolds number dependence we now studied results at
two different Reynolds numbers based on the bulk velocity
by looking at the same radial position for both cases. One
might argue that this is not correct and we should compare
results based on local Reynolds numbers, i.e. depending on
the radial position. The problem of defining such a Reynolds
number, as mentioned earlier, limits the possibility to col-
lapse all results for various components of the acceleration.
Since there is a dependence of statistics on the radial posi-
tion, the local Reynolds number should depend on the radial



Figure 7: Base-10 logarithm of the standardized pressure
fluctuation PDF, but now only results for Rer = 647 at
various radial positions are shown. Triangle: r = 0.1, solid:
r = 0.5, squares: r = 0.95.

Figure 8: Same as Figure 6 but for the pressure gradient.
Each component of the pressure gradient is studied sepa-
rately. Result are shown for both Rer = 362 and Re, = 647
(longer, extended lines). Circles: radial component, squares:
tangential component, diamonds: axial component. Results
are for r/R = 0.5.

position as well. Hill (2002) suggested not to use Rey to
scale the results, since it is based on urms and hence not
universal. Instead he defined a new Re—number, R,, as
the ratio between (a)!/? and {ag)/?, ie. total (or fluid-
particle) and viscous acceleration. This scaling did not give
satisfying results in our case.

A question which requires further investigation is
whether discrepancies from isotropic results by Tsinober et
al. (2001) are caused by the inhomogeneity of the flow or
by the small value of the Re—number. To investigate this,
simulations at higher Re—number should be performed.
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