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ABSTRACT

Direct numerical simulations (DNSs) of decaying
isotropic turbulence with a passive scalar at different
Schmidt numbers show that the Kolmogorov and Batchelor
scaling collapse the high wavenumber region of the spec-
tra and transfer functions effectively. There is a k! range
for the inertial-diffusive range at small Ry for Sc > 1. To
gain some information at a higher R, EDQNM simulations
are used, after validation at small R, against the DNS. Al-
though the different inertial ranges yield slopes that differ
slightly from those predicted by theoretical arguments, the
scaling and variation in slope between inertial and inertial-
diffusive ranges are adequately reproduced by the EDQNM.
The pdf of some of the terms in the transport equation for
62 provides some insight into which term is responsible for
the formation of large radius of curvature scalar gradient
regions. :

INTRODUCTION

Mixing of a passive scalar is implemented much more effi-
ciently by turbulent than laminar flows. Understanding the
complexity of turbulent mixing has important implications
for many engineering applications. For example, since the
dynamics of the scalar small scales play an important role in
combustion, their adequate understanding is an important
prerequisite to controlling turbulent combustion. At present,
full direct simulations are out of reach of current comput-
ers. The only approach is to rely on LES, where small scales
are modeled. Realistic scaling of the small scales which ac-
counts for the effects of the turbulent Reynolds number R
and the Schmidt number Se (= v/vy, where v is the kine-
matic viscosity and vy is the diffusivity of the scalar) should
help in fine tuning sub-grid-scale closures. To better under-
stand the behavior of the passive scalar dynamics at high
Reynolds numbers, analytical turbulence theories, such as
the EDQNM (Eddy Damped Quasinormal Markovian) ap-
proach, can be of help. This approach is described in Lesieur
(1987) and has been recently applied by Herr et al. (1996)
to passive scalars with a mean gradient.

In the present study, direct numerical simulations (DNS)
of decaying isotropic turbulence with a passive scalar have
been carried out over a range of small Ry (maximum of
about 70) for Sc equal to 1 and 3. Previous results (Antonia
& Orlandi (2003a,b)) at a smaller Ry, but with a wider

range of Sc (0.07 to 15) have also been used. The data base
is used to gain some insight into the transfer of the scalar
from large to small scales. This transfer, together with that
of the kinetic energy, is at the root of the complex nature of
turbulence. The Navier-Stokes equations, when expressed in
the spectral domain, suggest that the transfer is made up of
all the triadic interactions. These can be readily computed
via DNS.

For the EDQNM theory, closure of the triadic interac-
tions is necessary. The interesting feature of this theory is
that the smallest and largest scales can be widely separated.
The increment in the wavenumber interval can be increased
in octave steps, with a concomitant reduction in compu-
tational time. The evolution equations for the spectra are
solved with a closure that models the complex interaction be-
tween the structures (phases). In the past, for high Reynolds
numbers, spectral closures have been validated by compari-
son with LES results (Herring (1990)). Here the validation
of the EDQNM is against DNS at a small Reynolds number.
One objective is to ascertain the most appropriate scaling
for the energy and scalar spectra and their relative transfer
functions. The spectral closures can be used at relatively
high Sc and Ry and therefore permit a more suitable com-
parison with the predictions of Kolmogorov and Batchelor.
For decaying turbulence, DNS cannot yield a k=3/3 inertial
range due to current computer limitations. DNS can how-
ever, at small R, and moderately high Sc, allow the k!
range of Batchelor to be tested. It should be recalled that,
according to Batchelor, the k~1 range should exist even in
the absence of an inertial range.

EDQNM has been used to study relatively high Reynolds
number flows. Similarly to Herring (1990), we have observed
that the spectral closure does not reproduce a k—5/3 range
at moderate Ry. The experiments of Mydlarski & Warhaft
(1996) have indicated that k—5/3 is approached only when
Ry is about 10%. To our knowledge, there has been not yet
been an attempt to check if EDQNM can reproduce these
experimental observations. Because of lack of space we will
not address this issue here; it will be the subject of a future
paper. The highest R, here consider in the present paper is
only about 200 and, accordingly, we do not have a k{ —5/3)
range; instead, we observe a k™13 range, which is consistent
with the compensated spectra reported by Herring (1990).
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PHYSICAL MODEL

The DNS is based on the Navier-Stokes equations and
transport equations for a passive scalar. These equations
are well known and not reproduced here; instead, a few
comments are made with respect to the numerical method.
Almost all DNSs of isotropic turbulence were implemented
using pseudospectral methods; here, a second-order finite
difference scheme is used (Orlandi (2000)). It is generally
felt that second-order accuracy is too dissipative, leading to
a faster decay of the spectra in the dissipation range. We
would like to dispel this view by comparing our energy spec-
tra with those reported by Wray (1999). Since there is an
influence of initial conditions on the time history, the com-
parison can be done only with scaled spectra. To further
assess the quality of our numerical method, the comparison
is also extended to the energy transfer function. Orlandi &
Antonia (2002) showed that scalar spectra at Sc = 7, as ob-
tained by the two methods, follow each other closely. The
transfer of energy T(k) has been calculated using

AE(k)
at

This is an indirect calculation; the direct way consists in
evaluating the triadic interactions from wavenumber space
variables. Using a pseudospectral code,we verified that di-
rect and indirect calculations of T(k) agreed well with each
other.

In the EDQNM, Eq.(1) can be solved if an expression
for T'(k) as a function of E(k) can be derived from the
Navier-Stokes equations. Such an expression is given by
Lesieur (1987). The integral of T(k) must satisfy conser-
vation properties. Using a special transformation, Crocco
& Orlandi (1985) showed that these properties can be veri-
fied readily. The transformation maps the p — ¢ semi-infinite
domain into a 8 — v triangular domain. In the T(k) ex-
pression, there is a ’damping function’ where a constant C)
appears. Different expressions have been proposed. Here,
we adopt the expression of Orszag (1970), ie. n(k) =
vk? 4 C5\[k3E(k)]*/?, which includes a local effect, instead
of n(k) = vk? + Cx [ k?E(k)dk]'/2. The latter expression
gives a stronger damping at high k with too fast a rate of de-
cay of the spectrum. The expression for T(k) is not reported
here.

The evolution of Eg(k) is obtained by

T(k) = 20k?>E(k) + (1)

3Egt(’“) = Ty(k) - 2= K*Ep (k) (2)

where the expression for Ty(k) in the new variables 8 and
v can be obtained from equation (Vii-12-14) on Pg.260 in
Lesieur (1997).It is

To(k) = / dp / V(SS (k,8,7) — S5 (k,8,7)] (3)

with
So(k,5,7) = K* Bo(6,7) Dok, 8:7) Z3 (P08 — By k)
0

where

Sg(k,ﬁ,v):Se(g,

The geometrical factor and the relaxation frequency are

S (k,B8,7) = Sg(k,B8,7), 8,7) (5)

Bo(B,7) = 7[1 - (=8 + 8% - 1] (6)

Dotk 1 — e~ [K(B)+C(BE)+C(vk)]E ;
o587 = ey 4 B T <R @
The expression for (k) is similar to that for n(k) but for
k = Bk and k = k, instead of v, appears v/Sc.

Egs.(1) and (2) advance in time by a semi-analytical
scheme (Herring & Kraichnan (1972)) that allows a time
step greater than that possible by the low storage third-
order Runge-Kutta scheme used in DNS. As described in
Crocco & Orlandi (1985), the time step can be increased
with a predictor-corrector scheme. To obtain the solu-
tion at higher Re and Se, starting from E(k) = Eg(k) =

2
(%—)%(f;—)exp(—élz%), in the first short period of time

there is a build-up of energy and scalar dissipation rate at
high k, due to the transfer from low to high &. In this short
period, the total kinetic energy ¢?/2 = f E(k)dk and scalar
variance /2 = f FEg(k)dk remain constant. However, the
energy and scalar dissipation rates grow and, consequently, a
very small time step is required. To speed up the simulation,
a time transformation allows the time step to be increased
when the power-law decay begins.

Scaling

In simulations of decaying turbulence, it is important to
identify the most appropriate scaling variables and test the
different types of similarity solutions that have been pro-
posed. There is strong evidence in the literature in support
of a Kolmogorov scaling for E(k) and a Batchelor scaling for
Eg(k) when the wavenumber is large. On the other hand,
George (1992a,b) proposed an equilibrium similarity the-
ory with a scaling based on the Taylor velocity and scalar
microscales A and Ag and the turbulent energy and scalar
variance. In this case, similarity applies to all scales of mo-
tion and, unlike the earlier asymptotic results of Karman &
Howarth (1938) and others, is possible both for small values
of R, and when Rj decreases with time. This similarity is
currently being assessed using the present DNS database.

The Kolmogorov scaling (indicated by the superscript
%), based on v and 7 = (?)1/4 (e = 2ufk2E(k)dk) when
applied to Eq.(1) gives

OE~

=T* - 2k*2E* 8
e (8)

2

Where T =T"(£)%, E = E*(£) and t = t*(L).
For the passive scalar the Batchelor scahng (indicated
by +) introduces the length scale ng = 7715—__’ the scaled
spectrum and transfer are Eg(k) = E;’(k‘*’)(x—”T”B—) and

To(k) = T+(k+)(—X-L) (x = 2vg [ k2Eg(k)dk) giving the

npSc
following dimensionless equation

OB,
at*

Note that the Reynolds and Schmidt number dependen-
cies do not appear explicitly in Eqs(8) and (9).

=T; -2k Ef (9)

RESULTS

Here we focus on small to moderate Reynolds numbers.
In the former case, Ry, is around 60, for which a well resolved
pseudospectral simulation in a box of dimensions 27 and a
5123 grid is available (Wray (1998)). Previous finite differ-
ence results with a 2403 grid at R, approximately 46 were
used in other papers to analyse the Sc dependence. Here,a
new set of results with a 2703 grid at a R, close to that
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Figure 1: Time history of (a) Velocity rms and (b) scalar
rms . Thin lines EDQNM, thick lines finite differences DNS,
symbols pseudospectral DNS,

of Wray is used.The simulations include passive scalars for
two values of Sc (1 and 3). Since the ability of second-order
finite difference methods to yield accurate results has been
under a cloud, we would like to show that this scepticism
is not justified. In addition, we find that EDQNM yields,
at the same R) as for the DNS, adequate results. The time
evolution of ¢% /2 depends on the numerical method used; for
DNS, there is generation of very energetic nonphysical unre-
solved small scales that are dissipated differently. Following
the initial transient period, all simulations reach a power-law
decay behaviour, as shown in Fig.la. Wray evolved the sim-
ulations for a relatively short time following the onset of the
¢? ~ t=™ regime. The present finite difference simulation
evolved up to t = 60 power-law region extending between
t=20 and t=60 (i.e. the range is about a factor of 3 larger
than that observed in Wray’s database). In EDQNM, due
to the increase in the highest value of k, the energy build-
up does not occur and, consequently, the transient is more
physical than in DNS. In addition, EDQNM can evolve for
relatively long times before changes in the power-law decay
are discernible. DNS and EDQNM show (Fig.1b) that, after
the transient, and independently of Sc (except for Se << 1),
all distributions of 82 decay with values of m approximately
equal to —1.4 for DNS and —1.6 for EDQNM.

Small Reynolds number(R, ~ 60)

Fig.2a shows that Kolmogorov-normalized energy spec-
tra, obtained by the finite difference DNS and by EDQNM,
compare well with those from pseudospectral simulations
over a large range of wavenumbers. We have reported spec-
tra at two instants; the pile-up in the pseudospectral sim-
ulations is due to the dealiasing procedure. The EDQNM
generates spectra with a more rapid exponential decay than
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Figure 2: Profiles of (a) Spectra and (b) transfer at Ry ~
60. Thin dashed lines EDQNM, thick lines finite differences
DNS, symbols pseudospectral DNS.

for DNS. This decay does not depend on the number of
octaves and on the accuracy used for the triadic integral
calculation. In addition, the best results are obtained with
a local damping, as discussed previously. The exponential
range in both EDQNM and DNS does not vary with time
and does not change with v.

Corresponding to the spectra in Fig.2a, Fig.2b shows
that Kolomogorov-normalized distributions of kT(k) agree
with each other satisfactorily. In particular, EDQNM gives
results in agreement with those from DNS, so there is hope
that this theory can be used to study the behavior at large
Ry.

We are also interested in testing the Batchelor scaling for
the scalar. The finite difference DNS at this small Ry was
performed for two values of Sc (1 and 3). Antonia & Orlandi
(2003b) showed that at an even lower Re, the finite differ-
ence results agree with those from a pseudospectral method.
The EDQNM was used to evolve six scalar fields, each with a
different Se¢ (0.01,0.1, 1,3, 10, 20). Fig.3a shows that at the
same t as in Fig.2, the collapse of the scalar spectra is rather
good and the EDQNM results agree with those from DNS.
EDQNM allows simulations at higher Sc with a significant
k~! range. The appearance of this region begins near S¢ = 1
and continues to extend as Sc increases. For the scalar at
various values of Sc, the spectra do not collapse perfectly
in the exponential region; the collapse of the scalar transfer
functions (Fig.3b) is worse. This can be explained by con-
sidering that kTT+, around k+ = 1, should balance k3+ E+,
and then, after multiplying by &3+, the small differences for
the scaled spectra in Fig.3a are enhanced.

However, Fig.3b shows satisfactory agreement between
DNS and EDQNM scalar transfer functions; the positive and
negative peaks do not vary appreciably with Se; further, all
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Figure 3: Profiles of (a) dimensionless scalar spectra and
(b) scalar transfer at Ry = 60; thin lines EDQNM at Sc =
0.01,0.1,1,3,7,20; tick lines finite difference DNS at Sc =
1,3

simulations show that the transfer is approximately constant
across the k~! range. Collapse of the transfer functions does
not occur for Sc¢ << 1 and it seems that for EDQNM, there
is a weak increase of the maximum value with Sc. Despite
these small discrepancies, we can state that the agreement
is adequate. The formation of a substantial k~! range in
decaying turbulence has not been evident in DNS results, ap-
parently because large values of Sc are not readily achievable
with DNS. Lesieur et al. (1987), using EDQNM, observed
this inertial diffusive range but in connection with an inertial
range. They did not show spectra at low Reynolds num-
bers and different Sc nor was the presence of a k~! range
checked for a weak velocity field. We reiterate that Batche-
lor thought that a weak field is sufficient for generating the
compressive strain rate that produces sharp scalar gradients
at high Sc. We are nevertheless satisfied that EDQNM can
reproduce part of the complex physics of interest to several
applications where a passive scalar plays an important role.
We have found that when Ry, = 5 and Sc¢ = 20, there is no
k~! range. The latter only begins to form at Ry = 15.

Moderate Reynolds number (R) = 220)

At present, only LES provides access to high Reynolds
numbers, but it cannot be used to test different types of
scaling due to the lack of a dissipation range. The only
alternative is EDQNM. For example, by increasing v by a
factor of 20, R) is ~ 220 at t = 60. The energy spectrum
in Fig.4a shows a relatively long inertial range close to that
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Figure 4: Profiles of (a) energy and scalar spectra and (b)
compensated spectra at Ry ~ 220; thin lines scalar at Sc =
0.01,0.1,1,10; tick lines energy

displayed in several classical textbooks. For instance, Ten-
nekes & Lumley (1972) described qualitatively the behavior
of scalar spectra for Sc << 1 and Sc >> 1. We have used
four values of Sc¢ = 0.01,0.1, 1, 10,realising that the smallest
and largest of these only poorly approximate the previous
inequalities. Fig.5a shows that, because of our initial condi-
tions, both the energy and scalar spectra grow quartically at
low k. All scalars show a maximum at the same wavenum-
ber (kas) and their values do not depend on the Schmidt
number. For S¢ << 1, the dissipation range begins near
kar. For Se = 0.1, a very short equilibrium range appears.
At S¢ = 1,it is of comparable extent to the energy inertial
range. At Sc = 1,a very short viscous diffusive range forms,
which expands for Sc¢ > 1. At this point, we would like to
point out that EDQNM gives inertial and inertial diffusive
ranges with slopes (1.5 and 1.1) that differ from the theoret-
ical predictions. This is not related to our time integration
scheme or the accuracy of the triadic integral calculation but
is related to the EDQNM closure. In the figures of Lesieur
et al. (1987), differences in slope are also detectable, es-
pecially if compensated spectra are plotted, as in Herring
(1990). Clearly ,the results could depend on the value of the
constant Cy (= 0.36), but it is interesting, if not surprising,
that the EDQNM can predict the approach towards k=573
as the the Reynolds number is increased.

Fig.4b shows compensated spectra ,evaluated by multi-
plying E(k) and Eg(k) by k-5, The resulting Kolmogorov
constant is about 1.5 whereas the Obukhov-Corrsin con-
stant is about 0.5. These values happen to be as reported
by Tennekes & Lumley. Sreenivasan (1995,1996) reviewed
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a large number of experimental results for these constants,
as inferred mainly from one-dimensional spectra. The cor-
responding values for the constants associated with three-
dimensional spectra are essentially as found here. In the
theoretical case, when the inertial range of the energy and
of the scalar spectra decay as k~5/3, the dimensional ar-
guments show that the constants inferred from E*(k*) and
Ef (k*)Sc'/3 are identical to those estimated from E(k)
and Eg(k).In our case, EDQNM yields a k15 region and the
constants are different. Figs.4b and 5a exhibit this difference
but, at the same time, Fig.52 shows a rather satisfactory
scaling of the compensated spectra at different Sc as well as
the variation of slope of the inertial-diffusive range.

The inertial ranges can be theoretically evaluated, fol-
lowing the arguments in Tennekes & Lumley (1972), by
assuming that the transfer functions are constant. At the
present moderate Reynolds number, the transfer functions,
T(k) and Ty(k), even if appropriately scaled, indicate large
negative values at small k. It is more useful to plot k+T9+
and k*T™, as in Fig.5b. The positive and negative contribu-
tions are similar. At low k, EDQNM indicates that the large
scales are almost independent of the diffusivity, in accord
with the time history of 62 in fig.1a; the imperfect collapse
of the maximum and its weak dependence on Sc is related
to the small influence of Sc on the decay of the exponential
range.

We can conclude that for a moderately large Re,
EDQNM allows to qualitatively describe the evolution of
the flow and to predict the different slopes in the inertial
and in the inertial-diffusive ranges.

SCALAR STRUCTURES

An interesting analysis of the structure of the passive
scalar at different Sc was given by Brethouwer et al. (2002)
when a mean scalar gradient is present. Even in this case,
when an anisotropy is imposed by the external field, the com-
pressive strain produces sharp gradients of the scalar thus
causing the scalar fleld to be more intermittent than the ve-
locity field. Here, we are interested in identifying the regions
of the scalar structures which contribute to the scalar trans-
fer by analyzing the individual contribution of each term in
the transport equation for 82, viz.

2 .
aeat/z = —0‘?99121 - u,,(%)z + 1y V20%/2. (10)

The term which corresponds to Ty in physical space
is the third-order structure function Dprgg(r). This latter
term was analyzed in some detail by Orlandi & Antonia
(2002). Here, our objective is to investigate how the struc-
tures associated with 02 affect the first term on the RHS
(Ta = —0(86u;/dz;) of Eq(10). The second term, always
negative,is the scalar dissipation rate whilst the last term
(Ty = v4V262/2) is related to the curvature of the scalar
gradient regions. The first and third terms can be positive
and negative so that their total contribution to the evolution
of 62 is negligible. Fig.6a shows the pdfs of ¢, = T, /(T2)*/?
and of o, = T /(T2)"/*.We note that these terms are very
intermittent, confirming the EDQNM results of Crocco &
Orlandi, 1985,i.e.non-local triadic interactions are highly lo-
calized and intense.Fig.6a shows that, for a large number of
points in the field, T, is small and there is a very small prob-
ability that it can reach twice its rms value. The trend of the
curvature-related term implies that, over a large part of the
field, high concentrations of the scalar reside in elongated,
thin structures. These are locations where high scalar gradi-
ents occur as a result of the compressive strain rate. Regions
with very high positive and negative curvature, driven by lo-
calized and intense vorticity, are very rare.

The joint probability density function between o, and
oq in Fig.6b allows the focus to be on regions of the scalar
which contribute significantly to the scalar transfer. We see
that structures with negative curvature contribute more pos-
itively; in these regions, the decrease in 62 is smaller than
expected from the local scalar dissipation rate. This sce-
nario is inverted when the curvature is of opposite sign. The
structures with positive curvature contribute positively to
the transfer and Fig.6b indeed shows that the contribution
from terms of the same sign is smaller than that when they
have opposite signs.

Although the figures shown here are for Sc¢c = 0.7, the
results do not change significantly with Sc (since each term
was normalized by its rms value).

CONCLUSION

The influence of the Schmidt number on the decay of a
passive scalar is of interest in practical applications and in
theoretical considerations. It is however impossible to un-
derstand the underlying complex physics by using only one
approach.In this paper,the focus has been entirely on numer-
ical experiments and simulations which use closures. Some
of the theoretical considerations about scaling and the cas-
cading of energy and the scalar variance from large to small
scales cannot be studied with DNS when the Reynolds num-
ber is large. We have therefore used the EDQNM spectral
closure. Both techniques indicated that Kolmogorov and

—333—
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Batchelor variables provide an effective collapse of the high
wavenumber range of the energy and scalar spectra. In ad-
dition, the numerical techniques have shown very clearly the
different ranges that exist in the spectra and how they are
related to the transfers from large to small scales. These
two aspects can contribute to improving the modeling of
small scales in LES for combustion related applications.
Clearly,inadequacies relating to the spectral closure remain;
hopefully, they should motivate future attempts at repro-
ducing the theoretical predictions at very high Reynolds
numbers.

The transfer of a scalar in wavenumber space has been
related to the corresponding terms in physical space, leading
to the conclusion that most of the scalar structures are elon-
gated but that high curvature regions are rare. Nonetheless,
the latter may be important since, in combustion, they are
usually associated with flame extinction.

ACKNOWLEDGMENTS

RAA acknowledges the support of the Australian Re-
search Council, P.O . the support of MURST 60%. We are
very grateful to Alan Wray for providing us with his pseu-
dospectral code.

REFERENCES
Antonia R.A. & Orlandi, P. 2003a. ”On the Batchelor

Constant in Decaying Isotropic Turbulence”, submitted to
Phys. Fluids.

Antonia R.A. & Orlandi, P. 2003b. "Effect of Schmidt
number on small-scale passive scalar turbulence” ,to appear
in Applied Mechanics Reviews.

Brethouwer, G. Hunt, J.C.R. & Nieuwstadt, F. T. M.
2002, ”Micro-structure and Lagrangian statistics of the
scalar field with a mean gradient in isotropic turbulence”,
J. Fluid Mech.. Vol. 474, pp.193 - 225 .

Crocco, L. & Orlandi, P. 1985. ”A transformation for
the energy-transfer term in isotropic turbulence”, J. Fluid
Mech. Vol. 161, pp.405-424.

George, W.K. 1992a ”The decay of homogeneous
isotropic turbulence”, Phys. Fluids A,Vol 4 (7),pp1492-1509

George, W.K. 1992b ”Self-preservation of temperature
fluctuations in isotropic turbulence”, in Studies of turbulence

" (eds T B Gatsky, S Sarkar & G Speziale) Springer Verlag

pp.514-528.

Herr,S., Wang, L.P. & Collins, L.R,, 1996, "EDQNM
model of a passive scalar with a uniform mean gradient”
Phys. Fluids , Vol. 8 (6), pp.1588-1607.

Herring, J.R. 1990. ”Comparison of closure to spectral-
based large eddy simulations”, Phys. Fluids A, Vol. 2 (6),
pp.979-983.

Herring, J.R. & Kraichnan, R. H. 1972. ?» Comparison of
some approximations for isotropic turbulence”, in Statistical
models and turbulence (ed. M.Rosenblatt & C. Van Atta)
Lecture Notes in Physics Springer Verlag, Vol. 12, pp.146-
194.

von Karman, T. & Howarth, L., 1938, ”On the statistical
theory of isotropic turbulence” Proc. R.Soc. London Ser.A
164, Vol.917, pp.192-215.

Lesieur, M. (1997) Turbulence in fluids 3rd rev. and
enlarged ed. Dordrecht, Kluwer.

Lesieur, M. , Montmory, C. & Chollet, J.P. 1987. "The
decay of kinetic energy and temperature variance in three-
dimensional isotropic turbulence”, Phys. Fluids, Vol. 30
(5), pp. 1278-1286.

Mydlarski L. and Warhaft Z.(1996) "On the onset of
high-Reynolds-number grid-generated wind tunnel turbu-
lence” J.Fluid Mech., Vol 320,pp 331-368.

Orlandi, P. 2000. Fluid Flow Phenomena : A Numerical
Toolkit, Dordrecht, Kluwer.

Orlandi, P. Antonia R.A. 2002. ”Dependence of the
non-stationary form of Yaglom’s equation on the Schmidt
number”, J. Fluid Mech. Vol. 451, pp.99-108.

Orszag, S.A.,1970, ” Analytical theories of turbulence”,
J. Fluid Mech. Vol. 41, pp.363-386.

Sreenivasan, K. R. 1995 ”On the universality of the Kol-
mogorov constant” Phys. Fluids Vol.7(11), pp.2778-2784.

Sreenivasan, K.R.1996 ”The passive scalar spectrum
and the Obukhov-Corrsin constant” Phys. Fluids Vol.8(1)
pp.189-196.

Tennekes, H. and Lumley, J.L. 1972, A first course in
Turbulence, M.I.T., Cambridge.

Wray, A. 1998 ”Decaying isotropic turbulence”, in
AGARD Advisory Report Vol. 345, pp.63-64.

—334—





