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ABSTRACT

The transportation property of scalar turbulence is studied
at various molecular Prandt] numbers in both homogeneous
and inhomogeneous turbulence. The results show that the
Reynolds averaged Prandtl number is a linear reciprocal
function of molecular Prandtl number, whereas subgrid
Prandtl number takes a minimum around Pr~1 in LES. The
variation of turbulent Prandtl number with molecular Prandt]
number can be well interpreted by the transportation
mechanism at different molecular Prandtl numbers.

1. INTRODUCTION

The scalar flux in turbulence is of great importance to
practical applications, both in engineering and in natural
environment. The eddy diffusion model is commonly used in
practice, where the Reynolds averaged scalar flux is
characterized by means of turbulent Prandtl number Pro, ie.
the ratio of eddy viscosity to eddy diffusivity. For simplicity,
the turbulent Prandt] number is usually assumed as a constant
around 0.8 for turbulent shear flows in engineering
calculation. However, model of constant turbulent Prandt]
number is questionable in consideration of the different
transportation regimes of scalar turbulence at various
molecular Prandtl number (Tennckes and Lumley, 1972). For
instance, at greater molecular Prandtl number (Pr>1) scalar
turbulence is transported by inertial-convection in the inertial
subrange; whereas there is inertial-diffussion transportation in
the inertial subrange at very small molecular Prandtl numbers
(Pr<<l)

In large eddy simulation of turbulence, the subgrid Prandtl
number Pr, is also utilized for evaluation of the turbulent
subgrid flux of scalar when an eddy viscosity type model is
used for the subgrid Reynolds stress. The subgrid Prandil
number was investigated by Moin et al ( 1991) in an uniform

shear flow at Pr=0.2, 0.7 and 2.0. They found that subgrid
Prandtl numbers were approximately around 0.8. However,
their results showed some regular variation of subgrid Prandtl
number with molecular Prandtl number; for instance, the
subgrid Prandtl number took minimum around Pr=0.7 (see
Figure 5 of their paper).

In this paper we investigate the turbulent scalar flux in
both homogeneous and inhomogeneous turbulence at
different molecular Prandt! numbers. Two testing cases are
studied, namely statistically stationary isotropic turbulence
with uniform mean scalar gradient and turbulent channel flow
with constant scalar at the wall. The results show evident
variation of turbulent Prandtl number with molecular Prandt]
number.

2. THE GOVERNING EQUATIONS AND NUMERICAL

METHODS

The governing equations for the stationary isotropic
turbulence with constant mean scalar gradient can be written
as
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in which u, is velocity fluctuations and J; is the random
force imposed at lower wave numbers;d is the scalar
fluctuation and G is the mean scalar gradient in x; direction,
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thus -u,G is the source term for scalar turbulence.
Coefficients v and x are molecular viscosity and diffusivity
respectively, and v/k=Pr is defined as molecular Prandtl
number.

Since both flow turbulence and scalar turbulence are
homogenous in this case we can pose periodic conditions in
three spatial directions and spectrum method is the best
choice for numerical computation. The initial velocity
spectrum is constructed by the method proposed by Rogallo
(1981) and the random forcing term is imposed in the low
wave numbers as proposed by Overholt and Pope (1998). The
grid resolution is 256° and Taylor-scale Reynolds number
equals to 50; the molecular Prandtl numbers range from O0.1to
3.0.

In the turbulent channel flow, which is driven by
longitudinal pressure gradient, the governing equation can be
written as
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in which @ is the instantaneous quantity of scalar turbulence,
i.e. its mean plus fluctuation. The flow Reynolds number is
2666, based on the bulk velocity and half width of the channel
and molecular Prandtl number ranges from 0.3 to 1.2. The
grid number is assigned as 12801290128 in longitudinal,
normal and spanwise direction respectively. Constant scalar
values are posed at the channel walls with
@=-laty=—land @ =1aty=1. Both flow and scalar
field are homogencous in longitudinal and spanwise
directions, hence the periodical condition is posed and Fourier
decomposition is used in these directions. In the normal
direction flow variables are decomposed by Chebyshev
polynomials. The equation is solved numerically by pseudo-
spectrum method. The details of the numerical scheme can be
found elsewhere (Xu et al 1996)

3. RESULTS AND DISCUSSIONS
3.1 Reynolds averaged Prandtl number

Figure 1 shows the variation of Reynolds averaged
Prandt! number, which is defined as Pr,=vy/k;, with
molecular Prandtl number in stationary isotropic turbulence.
The eddy viscosity vy is calculated by k-emodel, ie.
vy =Ck* / gwith C ;,=0.09, and eddy diffusivity is
determined by x;, = —(#,0)/G . The relationship between Pry
and Pr can be best fitted by a linearly reciprocal function
Pr,=A+B/Pr with 4=0.332 and B=0.0077 at Re;=50.

Figure 2 presents Reynolds average Prandtl number in the
outer layer of the turbulent channel flow, i.e. Y™>30, in which

vy =—(u'v')/(0U/dy) and Ky =-< v'0'>/{0(0)/%) - The
variation of Pry is also best fitted by a linear reciprocal
function Pr,=A+B/Pr as given in Figure 2 (a). Note that the
Taylor-scale Reynolds number is varied in the channel flow
and we can consider the both 4 and B as functions of Taylor-
scale Reynolds number, which is calculated by
Re, = 2K/3<10vK /& /v with K, & equaling to turbulent
Kinetic energy and dissipation. The variation of coefficients 4
and B with Taylor-scale Reynolds number is shown in Figure
2 (b). The turbulent flow in the outer layer of the channel can
be regarded as fully developed, hence we may conclude that
the linear reciprocal relationship between Reynolds average
Prandtl number and molecular Prandtl number is a common
rule in fully developed turbulence.

The linear reciprocal relationship indicates that the eddy
diffusivity is smaller at low molecular Prandtl number or the
scalar flux is smaller at lower molecular Prandtl number. It
can be well understood if we look at the spectrum of scalar
flux E,, (k) , shown in Figure 3 (a) for isotropic turbulence.
The narrower band of spectrum at smaller molecular Prandtl
number indicates that the diffusion is stronger in the
transportation. The total scalar flux can be calculated by the
integration of E,, (k) in spectral space, i.e. h= VE,o(k)dk .
The eddy diffusivity is proportional to the flux and turbulent
Prandtl number is inverse proportion to the flux. The
reciprocal of the scalar flux, scaled on the mean gradient G,
grid mesh A and root mean square of velocity fluctuation w,,,,,
is denoted by H, which is proportional to turbulent Prandtl
number. Figure 3 (b) shows that H is also a linear reciprocal
function of molecular Prandtl number. In summary, the
spectral analysis interprets the linear reciprocal relationship
between Pr, and Pr. Similar analysis can be made for
turbulent channel flow in which one dimensional spectrum of
scalar flux is used since the flow is inhomogeneous in normal
direction. Figure 4 (a) is the scalar flux calculated from the
one dimensional spectra at different ¥* and molecular Prandtl
numbers. Figure 4 (b) shows relationship between H and
molecular Prandtl number in some location of outer layer in
the channel. The results confirm the linear reciprocal
relationship between turbulent Prandt! number and molecular
Prandtl number.

3.2 Subgrid Prandtl number

The subgrid Prandtl number is defined by Pr,=v, /x, ,in
which v, is subgrid eddy viscosity and x, is subgrid eddy
diffusivity. If we use dynamic procedure, proposed by
Germano and Piomelli (1991), for gradient transportation
model of Smagorinsky type, the subgrid eddy viscosity and
diffusivity can be expressed as v, =CA[|d)| and
K, = DAT|S| - The coefficients C and D are determined as
follows

C=-LM,[2A MM, @)
D=-LM,[AM M, ®
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in which M, =a*

S|, =|S]S, - M, =a|S|R, ~[S]R, and
Ly =(aa, -4 i)-5, (a4 -0 %)/3, L =40-4,8),

ISA'|=(2§D.S'U)W; §, Is the filtered strain rate and R, is

filtered gradient of scalar.

The upper hat ~ is the first filtering with length A and
upper bar denotes the second filtering with length oA, in
which @=2 is adopted in computation. In terms of the
dynamic coefficients C and D the turbulent Prandtl number
can be expressed simply as

Pr=vixk=<C>/<D> ©)]

The results of subgrid Prandtl number for isotropic case
are presented in Figure 5 and for turbulent channel flow in
Figure 6. While Reynolds averaged Prandtl number is a
linearly reciprocal function of molecular Prandtl number, the
subgrid Prandtl number takes a minimum around Pr~1.0.

The behavior of subgrid Prandtl number can be well
interpreted in terms of the transportation of scalar flux from
resolved part to unresolved part. In spectral space the
governing equation of scalar turbulence and its filtered form
can be written as follows

(0/or + 26ck? ) E, (k) =T, (k) + 46"w (10)

[9f0+2(x+ ) | E,* (k) = T, (k) + 46w (11)

in which T(k) is the transfer spectrum for scalar flux and

T (k) is the counterpart of T(k) for resolved turbulence: and
the subgrid Prandtl number is defined as

WL R =LK L K==t (k) (12)

The transfer spectrum of scalar flux and its resolved part
are computed by the following equations

To\k)=Im| &"(k )k, Ju,(P)8\k ~ P)dp | (13)
T (k)= %(k)forlkl»lﬁl,lk "ﬁ’ <k, =0, otherwise
(14)

in which k, is the cutoff wave number. 7,”(k) is then
computed simply by the subtraction of 7, (k) from T,(k)
and it is shown in Figure 7.

The cutoff wave number is 64. The negative value of
transfer spectrum indicates import of scalar flux from
resolved scale turbulence into subgrid scalar turbulence. The
import is larger at greater Prandtl number. To estimate the
total transfer of scalar flux from the resolved scale to subgrid
scale turbulence of passive scalar, we calculate the integration
of Tf(k), ie.

7 = T, (k)dk (15)

11, (k) can be regarded as the production of subgrid scalar

flux and is shown in Figure 8. It clearly shows a maximum of
11,7 (k) around Pr=1.0 (less than 1) and thus there should be
a minimum of Pr, according to equation (12). This is the
explanation why the subgrid Prandtl number takes a minimun
around Pr=1.0

In the turbulent channel flow the transportation of
turbulent flux between resolved and unresolved scalar
turbulence can be computed in physical space as follows

1a(ey _1 2'(¢") _K<a€ 50’>_<0,a(”f‘9—”:—-9)> (16)

2 a2 apx,  \ov, oy, ox,
The last term of equation (16) represents the transportation of
turbulent scalar energy from resolved to unresolved part and it
should be proportional to the subgrid eddy diffusivity. That is

Tr=—(60(u,0- 1) fox, ) x, (17

The result of 7r verse molecular Prandtl number is plotted in
Figure 9, in which a maximum of transportation appears
around Pr~1, equivalently subgrid Prandtl number takes a
minimum around Pr~1.

4. CONCLUDING REMRKS

Both Reynolds averaged Prandtl number and subgrid
Prandtl number are varying with the molecular Prandtl
number in fully developed turbulence. Constant turbulent
Prandtl number, cither in RANS or LES, can be accepted for
large molecular Prandtl numbers, e.g. Pr>1. However great
variation of turbulent Prandtl number occurs at small
molecular Prandtl number, in particular Pr<<1. The reason
for that is attributed to the transfer mechanism of the scalar
flux between large- and small-scale of scalar turbulence.

We should emphasize that the variation property we have
found in paper is only valid in the fully developed turbulence.
In the near-wall region the relationship between turbulent
Prandtl number and molecular Prandtl number is different
from that in the outer region and behaves complicatedly as
shown in Figure 10 for the subgrid Prandtl number in the
near-wall region of the turbulent channel flow. The Taylor
scale Reynolds number is very low in near-wall region and
the turbulence is highly anisotropic with quasi-ordered
motion. The near-wall behavior of scalar turbulence need to
be further investigated
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Figure 7 The transfer spectrum of scalar flux for isotropic
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and unresolved turbulence in turbulent channel flow
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Figure 10 The subgrid turbulent Prandtl number in the
near wall region of a turbulent channel flow
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