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ABSTRACT

A nonlocal expression for the scalar flux was derived
using the Green's function for the scalar. The nonlocal
diffusivity in the expression represents a contribution to
the scalar flux from the mean scalar gradient at remote
points in space and time. Direct numerical simulation
(DNS) of channel flow was carried out to validate the
nonlocal expression. The velocity and scalar fields as
well as the Green's function were calculated in the cases
of the one- and two-dimensional mean scalar. It was
shown that the nonlocal expression exactly holds in both
cases. The local expression for the scalar flux was also
examined to show that the local approximation is not
accurate enough and that nonlocal effects are important.
The nonlocal expression evaluated in DNS is expected to
gain insight into modeling the scalar transport.

INTRODUCTION

Modeling the turbulent transport of scalars such as
mass, heat, and concentration is an important problem in
many fields including engineering and geophysics. The
scalar flux needs to be evaluated to solve the equation for
the mean scalar. In the eddy diffusivity model the scalar
flux is assumed to be proportional to the scalar gradient
and to be directed down the gradient. Although this
model is widely used, the limitation of this
approximation was also pointed out; a gradient transport
model requires the characteristic scale of the transport
mechanism must be small compared with the distance
over which the mean gradient of the transported property
changes appreciably (Corrsin, 1974). In turbulent flows
the length scale of turbulence is often as large as that of
the mean field variation. One of typical examples is the
scalar transport in the atmospheric boundary layer;
convective eddies driven by buoyancy are as large as the
boundary layer height and the eddy diffusivity model
has some defects.

Since the nonlocal effect is important in the
atmospheric boundary layer several attempts have been
doneto develop nonlocal models. Stul] (1984) proposed
the transilient turbulence theory that describes nonlocal

transport using a matrix of mixing coefficients.
Berkowicz and Prahm (1980) proposed a generalization
of the eddy diffusivity; that is, the scalar flux is
expressed by a spatial integral of the scalar gradient. The
nonlocal diffusivity involved in the model represents a
contribution to the scalar flux from the scalar gradient at
remote points. Nakayama et al. (1988) applied this model
to the calculation of the scalar field in the turbulent
boundary layer for engineering problems. Using the
Green's function Hamba (1995) obtained a exact nonlocal
expression for the scalar flux and evaluated one-
dimensional profiles of the nonlocal diffusivity from the
LES of the atmospheric boundary layer.

In the atmospheric boundary layer turbulent motion is
driven by buoyancy. Since in many other flows
turbulence is produced by mean shear, it is interesting to
examine nonlocal effects in shear turbulence. In this work
we examine a channel flow as a basic example of shear
turbulence. Using the Green's function we derive an exact
nonlocal expression for the scalar flux. We carry out a
DNS to evaluate one- and two-dimensional profiles of the
nonlocal diffusivity. We examine the limitation of the
local approximation and the importance of nonlocal
effects.

FORMULATION

In order to solve the transport equation for the mean
scalar it is necessary to model the scalar flux. In the eddy
diffusivity model widely used, the scalar flux is
approximated by

s 00
<ui9>=_KT'<-E M

Here, ( ) denotes the ensemble average, © is the mean
scalar, u'; and ©' are the velocity and scalar fluctuations,
respectively, and xr is the eddy diffusivity. This model is
local in space in the sense that the scalar flux at a point is
expressed in terms of physical quantities at the same
point. Berkowicz and Prahm (1980) proposed a
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generalization of the eddy diffusivity model; the scalar.

flux is given by

(VO )y)=—[dykn (y;y’)ag;yy,) 2

where kno is a coefficient representing a nonlocal
contribution; hereafter we refer to it as the nonlocal eddy
diffusivity.

Hamba (1995) introduced the Green's function to
obtain an explicit exact expression for the scalar flux.
The equation for the Green's function for 6' is given by
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where k is the molecular diffusivity. Using g'i the formal
solution for the scalar fluctuation can be written as

0'(x,t) = —Jdx'j(;dt'gf(x,t;x',t’)%(‘)(x',t') 0))

This solution leads to the scalar flux expression with the
nonlocal eddy diffusivity as follows

ne sl 2, ! ¢+ a Y
(ui0)(x,t) = dx jodt KL (X 6 X', )a_xge(x 1)
(=¢ui®")nL) (5)
where
K (66X 1) = (ui(x, g} (x, 6x’,t)) (6)

Let us mention the relation of the nonlocal expression
(5) to the local approximation. If the scalar gradient
00/8x'; is nearly constant in the region where KnLij#0,
the scalar flux can be approximated by

d0
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where xi;; is the local eddy diffusivity defined as
’ t 7, ’ 7
K00 = [dx’ [ Ui (x, 6X,) (8)

Therefore, whether the local approximation is good or not
depends on the relation in the length and time scales
between xn and 00/6x"; .

RESULTS AND DISCUSSION

In this section we show results from the DNS of channel
flow. Using DNS data we examine the following two
points: whether the nonlocal expression (5) is exact or
not and how good is the local approximation given by
(7). In the DNS we numerically solve the equations for the
velocity and the scalar given by

Table 1: Parameters for three runs.

Case 6 f, Average
1 0 2 X, Z,t
2 0 exp(-y0.09)  x,zt
3 sin(47x/Ly) 0 zt
du; du; dp 2%y,
—t=—u, = —=—+V +1,6;
o ek o e, O
Quj _
ox; (10)
2
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respectively, where p is the pressure, v is the molecular
viscosity, fu is an external force, and f; is an external
source. The equation for the Green's function g'; given by
(3)is also solved. The variables x;(=x), x2(=y), and x3(=z)
denote the streamwise, wall-normal, and spanwise
directions, respectively;  corresponding  velocity
components are given by ui(=u), ux(=v), and us;(=w).
Hereafter, all variables except for 6 are
nondimensionalized by the wall-friction velocity u, and
the channel half width L,/2. Since 6 is linear in the
equations, it can be normalized arbitrarily.

The Reynolds number based on u,and L,/2 is set to
Re, =180 and the Prandtl number is Pr=0.7. The size of the
computational domain is LxLxL,=9.6x2x4.8. A
staggered grid is adopted; it is uniform in the x and z
directions and is stretched in the y direction using a
hypertangent function. The number of the grid points is
NexNyXN,=256x128x256. The periodic boundary
conditions for u;, 6, and g'i are used in the x and z
directions. The no-slip condition u;=0 is imposed at the
wall (y=-1,y=1). The upper-wall boundary condition for
the scalar is =0 whereas the lower-wall condition is
0=0u(x,t); the function will be described later. The wall
boundary condition for the Green's function is g'i=0
because the boundary condition for the scalar is of the
Dirichlet type. We use the second-order finite-difference
scheme in space and the Adams-Bashforth method for
time marching. The computational time step is
At=1.5x10. The computation was run for a sufficiently
long time to be statistically independent of the initial
condition; then statistics such as the scalar flux were
accumulated over a time period of 18 unless otherwise
mentioned.

We calculated three cases as shown in Table 1. In all
cases the same velocity field is used; it is a typical
channel flow statistically steady in time and
homogeneous in the x and z directions. In Cases I and 2
the scalar at the lower wall is set to 6,=0. Instead, the
source term is nonzero; it is set to f;=2 in the whole
region in Case 1 whereas it is concentrated near the center
line at y=0 in Case 2. In Case 3 the source term is set to
zero and the dependence of 6, on space is introduced. 6,
is periodic in x with the period of L/2; two cycles are
included in the computational domain at O<x<L,.
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Figure 2. Profiles of mean scalar gradient.

Since the source term f, in Cases 1 and 2 is a function ofy
only, the scalar field is statistically homogeneous in the
x and z directions like the velocity field. We take an
average over the x-z plane and in time; statistics depend
only ony. In this case the scalar flux given by (5) can be
expressed as

00(y")
oy’

(u{®INL(Y) = - [ dy Ko (v3y") (12)

KLiz(3Y) = [dx’[dz’ [ dt"(uf (x, s (x, 6x7, 1)) (13)

because the scalar gradient 00/0y' does not depend on x',
z, or t'. The scalar flux given by (7) is also expressed as

(Ui (y) = ~KLiz(Y)g—? (14)

KLi2 ()= [dy Knpin (339 (15)

Figure I shows the mean scalar profiles for Cases 1 and
2. The DNS result by Horiuti (1992) is also shown; he
carried out the DNS of scalar in channel flow with the
same parameters as Case 1. The agreement between Case 1
and the DNS by Horiuti (1992) is good. The mean scalar
in Case 1 shows a logarithmic profile like the mean
velocity because both fields have a force or source term
constant in space. On the other hand, in Case 2 the source
term is concentrated near the center line; the scalar shows
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Figure 3. Profiles of nonlocal diffusivity kniao.
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Figure 4. Profiles of nonlocal diffusivity .

a steep gradient near y*=180 where y* is the wall-unit
coordinate. As previously mentioned, to examine the
nonlocal effect we need to compare the length scale of
KnLiz and that of the scalar gradient. Figure 2 shows the
profiles of the scalar gradient in linear scale for Cases |
and 2. The scalar gradient rapidly decreases near the wall
in both cases. It gradually changes at -0.8<y<0.8 in Case
! whereas it rapidly decreases near y=0 in Case 2. The
length scale of the scalar gradient variation near y=0 in
Case 2 is much shorter than that in Case 1.

Figures 3 and 4 show the profiles of the nonlocal
diffusivity kni2 and Knui, respectively, as functions of
y' for four locations of y. The components knzz and K2
are involved in (v'6") and (u'e"), respectively. The
profiles represent the contribution of the scalar gradient
aty' to the scalar flux ata given point of y. In Fig. 3 the
profile of xnL22 becomes wider as y increases. Here, let us
evaluate the width of the profile as the distance between
the two points whose value is e times the peak value:
the width is 0.05 for y=-0.942 and 0.12 for y=0. The
profile of knia» for the atmospheric boundary layer was
obtained by Hamba (1995); the width is 0.49y, for
y=0.6y, where y, is the boundary layer height. The
profiles of kni2s for the channel flow are not as wide as
those for the atmospheric boundary layer. This is due to
the difference in the mechanism of turbulence production.
In the atmospheric boundary layer plumes produced near
the bottom surface rise to the upper boundary; the
turbulent field can be nonlocal in the vertical direction.
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Figure 5. Profiles of scalar flux (v'8") for Case 1.
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Figure 6. Profiles of scalar flux (u'8") for Case 1.

On the other hand, in the channel flow vortices produced
by mean shear are stretched in the streamwise direction;
the nonlocal effect in the wall-normal direction is not
very strong. Nevertheless, the profiles in the channel flow
cannot be approximated by 8(y'-y); some nonlocal effect
may remain and its strength is determined by the relation
between the width of the nonlocal diffusivity and the
length scale of the mean field variation. In Fig. 3 the
location of the peak corresponds to y'=y. This means that
- the contribution of the scalar gradient at the same point
is the largest. The peak value may be proportional to (v,

In Fig. 4 the value of KnL12 is negative except for the
case of y=-0.017 since the (u'8") is negative at -1<y<0.
The profile of kn12 is somewhat wider than that of xnL22
at the corresponding location of y. For example, the
width of kn12 is 0.12 for y=-0.945. The profile of KnLi2
for y=-0.017 is different from the other three profiles; it
is negative at the lower half (-1<y'<0) and positiveat the
upper half (0<y’<1). Although the absolute value is small
the profile shows fairly nonlocal contribution. Here, we
should note that the value of knuiz is common for Cases 1
and 2 because it is determined solely by the velocity
field and it does not depend on the specific mean scalar
field.

Then, we examine the profiles of the scalar flux for Case
1.Figure 5 shows the profiles of (v'8'). At the lower half
in Fig. 5 the DNS by Horiuti, the present DNS, and the
nonlocal expression (v'0')nL agree well with each other.
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Figure 7. Profiles of scalar flux (v'8') for Case 2.

The absolute value of (v'8")1 is somewhat greater than the
DNS result at y=-0.9; it is slightly smaller than the DNS
away from the wall. Figure 6 shows the profiles of (u'6")
for Case 1. The value of (u'8") by the present DNS is
slightly less than that of the DNS by Horiuti (1992). Here,
we consider the present DNS is correct when comparing it
with the eddy diffusivity expressions because their
coefficients are evaluated using the present DNS data. The
nonlocal expression (u'6")n. agrees well with the DNS
result. On the other hand, (u'@')y is much greater than the
DNS result near the wall. The overestimate of (u'0")y is
Jarger than that of (v'6")L. This is because the profile of
KnLi2 near the wall in Fig. 4 is wider than that of KnL22 in
Fig.3 and the nonlocal effect is more important. Near the
center line at y=0, (u'8"), vanishes although the DNS
result remains to be a small positive value. This zero
value of (u'0") is because 0©/dy=0. As shown in Fig. 4
the nonlocal diffusivity has a broad profile for y=0. Since
the scalar gradient changes its sign at y=0 the
contributions of the upper and lower halves in (12) are
both positive; they induce a positive scalar flux at y=0.

To demonstrate that the nonlocal diffusivity is
independent of the mean scalar field, we adopt another
type of f, concentrated near y=0 in Case 2. In Fig. 7
(v'0")nL agrees well with the DNS result. On the other
hand, the absolute value of (v'8')L is much greater than
the DNS result near the center line. This overestimate is
due to the short length scale of the mean field variation
in Case 2 as shown in Fig. 2. The agreement between
(u®)n and the DNS result in both Cases 1 and 2
demonstrates that the nonlocal expression (12) is exact
in the case of the one-dimensional mean scalar.

Next, we investigate the nonlocal contribution not
only in the wall-normal direction but also in the
streamwise direction. In Case 3 the value of the scalar at
the lower wall, 8y, is set to be periodicin x; the resulting
scalar field is statistically homogeneous only in the z
direction. We take an average in the z direction and in
time; statistics depend on x and y. In this case the scalar
flux given by (5) can be expressed as

mne 7 2 ? ’ a ’ ’
(0i0")nL (x,y) = = [ dx’ [y T (5, X',y )55 OY)

’ ’ a ’ Is
+KNLi2 (X Y5 XY )5)790( 8] (16)
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Figure 8. Contour plot of mean scalar for Case 3.
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Figure 9. Contour plot of nonlocal diffusivity Kniz: for
y=-0.901 for Case 3.
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Figure 10. Contour plot of nonlocal diffusivity xwpa for
y=-0.605 for Case 3.
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Since the velocity field is homogeneous in the x
direction and inhomogeneous in the y direction, the
diffusivity ®aLij(x,y:x'y") is a function of x'-x, y, and y'.
The scalar flux given by (7) is also expressed as

. 90 20
(uj6 )L(x,y)=—KL“(x,y)3;—Kuz(x,y)3y~ (18)
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Figure 12. Contour plot of scalar flux (v'8"),, for Case 3.

K (6Y) = [dx”[dyseny (%, y:x,y) (19)

Figure 8 shows the two-dimensional contour plot of
the mean scalar for Case 3. About the halfregion in the x
direction is shown. At the lower wall © is positive at
0<x<2.4 and negative at 2.4<x<4.8. The absolute value of
the mean scalar near the wall decreases rapidly as y
increases because the source term f is zero in this case.
The scalar gradient in the y direction is greater than that
in the x direction. Away from the wall the phase of the
variation in the x direction is shifted downstream due to
the effect of convection by the mean flow.

Figures 9 and 10 show the contour plots of ka2 as
functions of x'-x and y' for y=-0.901 and y=-0.605.
respectively. The diffusivity wxw22 represents the
contribution of the scalar gradient 80/0y at (x'-x)y') to
the scalar flux (v'8') at (0,y). The profiles are elongated in
the upstream direction due mainly to the mean flow
convection. The elongated profiles imply that the scalar
gradient at points apart in the upstream direction affect
the scalar gradient at (0,y). The size in this direction is
longer for y=-0.605 than for y=-0.901. This difference is
because the mean flow is faster and the time scale k/¢ is
greater for y=-0.605. The width in they direction reflects
the turbulent diffusion as examined before. Some wiggle
is seen just downstream the point at (0,y). Although some
nonlocal contribution due to the diffusion may exist
even from downstream, the reason for the wiggle is not
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Figure 13. Contour plot of scalar flux (v'8'), for Case 3.

clear; it may be due to the error of the finite different
scheme.

Figures 11,12, and 13 showthe contour plots of {v'@")
by the DNS, (v'0") L, and (v'0')L, respectively. The value
of {v'0")nL agrees well with the DNS result whereas the
absolute value of (v'6') is fairly greater than the DNS
near the wall. Moreover, the location of the peak of
(v'8" in Fig. 13 is shifted upstream compared to the
DNS result; the positive peak of (v'0") is located at (1.7,-
0.93) whereas that of the DNS result is at (2.0,-0.92). In
the local expression the scalar flux takes its maximum
value at the point where the scalar gradient is the largest
when the local diffusivity is constant. This result
indicates that in the DNS the peak location of the scalar
flux is shifted downstream compared to that of the scalar
gradient. This phenomena cannot be described by the
local expression; the nonlocal expression is required to
predict the peak location accurately.

CONCLUSIONS

A nonlocal expression for the scalar flux is derived
using the Green's function for the scalar. The nonlocal
diffusivity represents the contribution to the scalar flux
from the scalar gradient at remote points in space and
time. To validate the nonlocal expression DNS of channel
flow is carried out; the velocity and scalar fields and the

Green's function are calculated in the cases of the one-
and two-dimensional mean scalar. It was shown that the
nonlocal expression is exact in all cases. At the same time
the local expression for the scalar flux is compared; the
scalar flux near the wall is overestimated and the peak
location is shifted in the streamwise direction compared
to the DNS results. This shows that the local
approximation is not accurate enough and nonlocal
effects are important. The nonlocal expression evaluated
in the DNS is expected to gain insight into modeling the
scalar flux.

As future work, this approach should be applied to
more complex flows than channel flow; it is interesting
to examine two-dimensional or temporally changing
mean velocity field and its effect on the scalar flux. We
expect that this approach can also be applied to the
Reynolds stress; the nonlocal viscosity represents the
nonlocal contribution of the velocity gradient to the
Reynolds stress.
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