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ABSTRACT

The effect of rotation on the time development of a homo-
geneous turbulent shear flow is studied by means of a series
of direct numerical simulations. At the same time the influ-
ence of the rotation on the transport of a passive scalar in
the turbulent shear flow is investigated. The shear rate used
in this study is relatively high. The reason for this is that
we want to approximate the situation in a turbulent bound-
ary layer close to the wall. Because of the high shear rates
the results of the numerical simulations can be compared
with viscous rapid distortion theory based on the linearized
equations of the flow and scalar fields. It is shown that ro-
tation has a strong influence on the time development of the
turbulent kinetic energy and anisotropy of the flow as well
as on the direction of the turbulent scalar flux and on the
scalar-velocity fluctuation correlation. Viscous rapid distor-
tion theory predictions of the flow and scalar field agree in
general well with the numerical simulations.

INTRODUCTION

In atmospheric flows and oceans, and in many practical
applications like gas turbines and cyclones rotation influ-
ences the turbulent flow field. As a consequence of its
influence on turbulent flow, rotation also affects the turbu-
lent transport of scalars like heat and contaminants. The
most simple geometry with both shear and rotation is a ho-
mogeneous turbulent shear flow in a rotating frame. This
particular geometry is of great interest for Reynolds-stress
model (RSM) development but is is also of fundamental im-
portance. It has been studied by Bardina et al. (1983), Salhi
& Cambon (1997) and Tanaka et al. (1998). Tanaka et al.
studied the vortical structures at different rotation speeds
by means of direct numerical simulations (DNS). Bardina
et al. performed large-eddy simulations (LES) and studied
the effect of rotation on development of the turbulent fow.
Salhi & Cambon compared the LES of Bardina et al. with
viscous rapid distortion theory (RDT) and found an over-
all reasonable agreement between the LES and RDT. The
transport of scalars has only been studied in a non-rotating
homogeneous turbulent shear flow to our knowledge (Rogers
et al., 1989).

We present an analysis and DNS of homogeneous turbu-
lent shear flow with a passive scalar field in a rotating frame.
The shear rate is high and the scalar field has a linear and
steady mean gradient. A series of DNS have been carried
with a range of different rotation speeds. The results of the
simulations are compared with viscous RDT. Qur goal is to
study the influence of rotation on the time development of
the turbulent flow, similar to Bardina et al. (1983), but
without a subgrid-model and with a much higher resolution

and a higher shear rate. The effect of rotation on turbulent
transport of a passive scalar is investigated as well.

We now describe the details of the DNS and RDT and
present some results on the time development of a homoge-
neous turbulent shear flow with a passive scalar field in a
rotating frame.

THE DIRECT NUMERICAL SIMULATIONS

The governing equations of the incompressible flow for a
homogeneous turbulent shear flow in a rotating frame are

Vau=0 (1)
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where u is the fluctuating velocity, v the viscosity, § =
U, /8z3 is the linear and constant mean velocity gradient
and Q = Qe is the rotation vector where ey is the unit vec-
tor in the z3-direction. The rotation speed of the frame is 2.
The mean velocity profile, coordinate system and direction
of rotation are sketched in figure 1. In the flow a passive
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Figure 1: Sketch of the mean velocity profile, coordinate
system and the direction of rotation.

scalar is present with a mean linear and constant scalar gra-
dient G. The transport equation for the fluctuation of the
scalar 8 is given by

Qf +u-V«9+Sx3—% + Gu=~xrV3} (3)
ot foz 3

where « is the diffusivity of the scalar. The term G-u is a
production term of scalar fluctuations.

The DNS of the three-dimensional turbulent flow and
scalar mixing is carried out with a standard pseudo-spectral
method. The size of the computational domain is 47 x 27w x
4m with periodic boundary conditions in all three directions.
The resolution of the DNS is 320 x 160 x 320. The aliasing
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errors are reduced by a combination of phase shifting and
truncation. A fourth-order Runge-Kutta scheme is used for
the time advancement. During the time advancement the
coordinate system is moving with the mean flow field. It
is remeshed with a regular time interval as in the compu-
tations of Rogers et al. (1989). Velocity and scalar fields
are stored for post-processing when the coordinate system
is non-skewed.

To obtain an initial velocity field a short DNS of decaying
isotropic turbulence is carried out. The initial velocity field
is approximately isotropic and has a Reynolds number of
Re), = u'\/v = 31.5 where v’ is the root mean square (rms)
of the velocity fluctuations and X the Taylor length scale.
The initial integral turbulent length scale is 0.41 which gives
a ratio of integral length scale to the box size in the z; direc-
tion of 0.033. The initially isotropic field is then distorted by
a constant and rapid shearing motion. The initial value of
non-dimensional shear number SK/e = 18, where K is the
turbulent kinetic energy and e the dissipation. This value is
approximately the maximum value of the non-dimensional
shear number in a turbulent channel flow (Moser et al., 1998)
and turbulent boundary layer {Komminaho & Skote 2002)
close to the wall.

Together with the flow the development of three pas-
sive scalars fields are simulated The scalars have all a
Schmidt/Prandtl number of ¥/k = 0.7 and have a mean
scalar gradient in the z1, z2 and z3-direction respectively.
The evolution for any mean scalar gradient is then a simple
superposition of these three passive scalar fields. The initial
passive scalar fields are without scalar fluctuations but the
mean gradient acts as a source of fluctuations.

VISCOUS RAPID DISTORTION THEORY

The rapid distortion theory is based on the assumption
that for a sheared flow the Navier-Stokes equations and the
advection-diffusion equation for the scalars can be linearized.
The assumption that the non-linear terms can be neglected
is valid as long as the shear is rapid and the distortion time
is not too long. For homogeneous flows the solution of the
RDT equations for the flow and scalar field can be found in
Fourier space. After elimination of the pressure the RDT
equations in Fourier space are given by
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where the time ¢* is scaled with the shear rate and €;;; is
the permutation tensor. The viscous and diffusion terms are
kept in the present analysis. To find the Reynolds stresses,
scalar fluxes and other mean statistical moments the Fourier
coefficients of the velocity and scalar have to be integrated
in wave number space. However, then an energy spectrum is
needed and a form for it has to be assumed. The statistical
moments are independent of the form of the energy spectrum
in case the viscosity is zero but then it is in fact assumed that
SK /e is infinite. Here it assumed that the energy spectrum
has the following form

E(k) = Ck? exp(—2kl) (N

where k is the wave number, C a constant and [ some char-
acteristic turbulent length scale. The shape of this spectrum
agrees fairly well with the DNS data. Using this spectrum
in can be shown that

-— (8)

The evolution of the statistical velocity moments accord-
ing to the viscous RDT is now completely determined by
the choice of Re* = Si%/v and the rotation speed. Here
Re* = 108 is taken which implies SK /e = 18 so that the
initial value of the non-dimensional shear number of the DNS
and viscous RDT are equal. The scalar spectrum is taken
equal to the energy spectrum with the same value for the
length scale {. All the statistical moments are computed by
integrating the RDT equations in wave number space and
time using numerical libraries.

RESULTS OF THE SIMULATIONS AND RDT

Five cases have been simulated and analysed. All the
simulations have the same initial isotropic turbulent flow
field and shear rate but the rotation speed is varied. The
following five cases have been considered : R = 2Q/S =0
(pure shear), R = -1/2, R= -1, R=-3/2 and R = 1/2.
We first study the time development of the flow field and
then of the scalar field.

Flow field

The time development of the turbulent kinetic energy
for the five cases is shown in figure 2. The symbols in this
figure and the following figures represent the results of the
DNS and the lines represent the results of the viscous RDT.
Figure 2 shows that the time development of the energy at

Figure 2: Time development of the turbulent kinetic energy
K obtained from DNS (symbols) and RDT (lines). The time
t is made non-dimensional with the shear rate S and the K

is scaled with its initial value. (7,— - — - — ), R=1/2;
(Dy )3R:01 (Oa__—),R=_1/21
(Aa """ )7 R=-1 (07—' """ _)7 R= _3/2

different rotation speeds is very well predicted by the vis-
cous RDT. A non-viscous RDT, which is not shown here,
would overpredict the growth rate of the energy. The case
R = —1/2 is shown to be the most unstable case (Salhi
& Cambon, 1997). Indeed, the energy grows very fast for
R = —1/2 and the flow is clearly destabilized by the rotation.
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The energy grows much faster than in the case without ro-
tation R = 0 for example. For R = —1 the energy still grows
but for faster rotation speeds (R = —3/2) the energy slowly
decays and rotation is stabilizing the flow field. For positive
€ (R = 1/2) the flow is also stabilized by the rotation.
Figure 3 shows the development of the anisotropy of
the turbulent fluctuations by means of one of the Reynolds
stress components b11 where b;; = u;i;/(2K) — §;;/3. The

Figure 3: Time development of the Reynolds stress compo-
nent b1;. Symbols and lines as in figure 2.

rotation clearly influences the anisotropy of the flow accord-
ing to the simulations. When R = 0 and R = 1/2 by
is positive and the streamwise component of the velocity
fluctuation is the largest component. In the most unsta-
ble case R = —1/2 the velocity fluctuations in the three
directions are approximately of the same magnitude. For
faster negative rotation speeds (R = —1 and R = ~3/2) the
component in the x3-direction is the largest fluctuating com-
ponent. The anisotropy of the velocity fluctuations is quite
well predicted by the viscous RDT. Only for large distortion
times the anisotropy is sometimes slightly overpredicted, for
instance for the non-rotating (R = 0) case. The time de-
velopment of the bi3 component, which is related to the
production of kinetic energy, is shown in figure 4. The most
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Figure 4: Time development of the Reynolds stress compo-
nent by3. Symbols and lines as in figure 2.

unstable case R = —1/2 has the largest value for b13 and it is

still growing at St = 5. For R = 0 and R = —1, b13 reaches
a maximum value after some time and then it slowly decays.
For R = —3/2 and R = 1/2 the Reynolds stress component
b1s becomes positive after some time which implies a neg-
ative production rate and a decrease of kinetic energy, but
thereafter it returns to a value around zero. Viscous RDT
predicts that in the stable cases R = —~3/2 and R = 1/2 the
Reynolds stress components b1; and b13 have an oscillatory
behaviour (Salhi, 2002). The simulation time is however too
short to be able to see these oscillations.

It is perhaps noteworthy to remark that according to
linear analysis without the influence of pressure there is a
symmetry between the cases R and —1 — R. However, the
effect of pressure breaks this symmetry (Salhi & Cambon,
1997). Furthermore, the Reynolds stress equations show
that without the influence of pressure the time development
of uiw1 at R is identical to the time development of uzus at
—1— R and vice versa and the time development of T1u3 is
identical at R and —1— R. In our case this implies that with-
out pressure effects the cases R = ~1 and 0 and the cases
R = —3/2 and 1/2 should have the same time development
for the energy and b13. The DNS and viscous RDT show
that this is not the case and therefore prove that the pres-
sure has an important influence on the time development of
the flow and its anisotropy.
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Figure 5: Time development of the rapid part of the
pressure-strain correlation I1;;. Symbols and lines as in fig-
ure 2.

An important statistical moment for modeling is the
pressure-strain correlation given by

Ou;  Ouj
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This pressure-strain correlation redistributes the energy be-
tween the different fluctuating velocity components. In gen-
eral the pressure is split into a slow part related to non-linear
processes and a rapid part related to the distortion of the
flow. The rapid part of the pressure satisfies in our case
Ous Auy
Vip() = (-25 —20)—2 4 202 10
P = ( oo +205 (10)
In figure 5 the time development of the rapid part of the
pressure-strain correlation II;; scaled with SK is shown.
The agreement between the viscous RDT and the DNS re-
sults is again good. The influence of the rotation on the
redistribution of energy between the different fluctuating
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velocity components is large. For R = 1/2 II;; is even posi-
tive after approximately St = 2.5 and adds therefore energy
to the streamwise velocity component whereas in the other
cases the rapid pressure-strain correlation redistributes the
energy from the streamwise component to the other velocity
components.

Scalar field

We have seen that the the turbulent flow is significantly
influenced by the rotation of the system. Because of this
alteration of the flow the turbulent transport of the scalars
will also be affected by rotation. Here below we show some
examples of this influence.

Figure 6 shows the time development of the ratio of the
rms of the scalar fluctuation to the root mean square (rms) of
the velocity fluctuations for the scalar with a mean gradient
in the zj-direction. Initially this ratio is zero because there
are no scalar fluctuations at St = 0. Then the ratio grows
very fast but levels off after some time. It seems to approach
an asymptotic value for long distortion times except in the
case R = 0 and R = 1/2 where a decrease of the growth
rate not yet can be observed at St = 5. In these cases the
ratio of the scalar fluctuations and the velocity fluctuations
grows significantly faster than in the cases with a negative
rotation speed. The rotation has also an effect on the rela-

Figure 6: Time development of (¢'/G)/(u'/S) for G = Ge;.
Symbols and lines as in figure 2.

tive intensity of the scalar fluctuations for the scalar with a
mean gradient in the xz3-direction as can be seen in figure 7.
For the scalar with a mean gradient in the xz3-direction the
rotation has more or less the opposite effect as for the scalar
with a mean gradient in the zi-direction. The ratio of the
scalar fluctuations to the velocity fluctuations grows faster
for the cases with a high negative rotation speed (R = —1
and R = —3/2) as shown in figure 8. Moreover, we see that
the viscous RDT gives an accurate description of the growth
of the scalar fluctuations.

Figure 9 shows the scalar flux coefficient u18/u} 4’ for
the scalar with a mean gradient in the z;-direction. In
the non-rotating case (R = 0) and in the most unstable
case (R = —1/2) the scalar flux coefficient is large and its
value is around -0.9. In the other cases the coefficient de-
creases faster during the distortion. Especially in the case
R = —3/2 the scalar-velocity coefficient has a small value,
approximately -0.3. Scalar-velocity fluctuation correlations
are thus significantly affected by system rotation. This can

Figure 7: Time development of (8'/G)/(u'/S) for G = Ge.
Symbols and lines as in figure 2.
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Figure 8: Time development of (§'/G)/(u'/S) for G = Ges.
Symbols and lines as in figure 2.

also be observed in figure 11 which presents the scalar flux
coefficient u3f/ujé’ for the scalar with a mean gradient in
the z3-direction. In the cases R = 1/2 and R = —3/2 the
scalar coefficient is much smaller than in the other cases.
The viscous RDT does not give a very accurate prediction
of the time development of the scalar flux coefficient for all
cases but it gives nevertheless a correct answer on the ques-
tion whether rotation reduces or enhances the scalar-velocity
correlation.

For the scalar with a mean gradient in the za-direction
the rotation has a less strong influence on the scalar flux
coefficient as can be seen in figure 10 but the effect is still
significant. In the cases that rotation is stabilizing the turbu-
lent flow (R = 1/2 and R = —3/2) the scalar flux coeflicient
is smaller than in the other cases.

We have seen that rotation affects the scalar-velocity
fluctuation correlation. We now study the effect of rotation
on the direction of the turbulent scalar flux. It is well known
that in turbulent shear flows the direction of the turbulent
scalar flux and the mean scalar gradient do not coincide
(Rogers et al., 1989). Figure 12 shows the time development
of the angle a of the turbulent scalar flux vector defined as

a = tan"! (uz6/u16) (11)
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Figure 9: Time development of the scalar flux coefficient
m/u’le’ for G = Ge;. Symbols and lines as in figure 2.

Figure 10: Time development of the scalar flux coefficient
u20/uy0" for G = Gey. Symbols and lines as in figure 2.

for the scalar with a mean gradient in the z-direction. This
a is in fact the angle between the direction of the turbulent
scalar flux and the z;-axis. Note that for the scalar with
a mean gradient in the zj-direction o = 0° implies that
the direction of the turbulent scalar flux is aligned with the
mean scalar gradient. The shear and the additional effect of
system rotation results in a large variation of the direction
of the scalar flux vector. For large negative rotation speeds
the angle between the scalar flux vector and the mean scalar
gradient is very large. In the case R = —1 for example-at
St = 5 the component of the scalar flux vector in the cross-
stream direction is significantly larger than the component
in the streamwise direction. Furthermore, observe that « is
well predicted by the viscous RDT. Figure 13 shows the time
development of the angle o for different rotation speeds but
now for the scalar with a mean gradient in the z3 direction.
For R = —1 a is close to —90° which implies that the scalar
flux vector almost is aligned with the mean scalar gradient in
the z3-direction. At R=1/2, R=0and R = ~—1/2 on the
other hand the scalar flux vector has a large component in
the z; direction. The case R = —3/2 has also a large scalar
flux component parallel to the z1-axis but the scalar fAux
points approximately in the opposite direction compared to
the case R = 0. All these trends are well described by the

Figure 11: Time development of the scalar flux coefficient
m/ugﬁ’ for G = Ge3. Symbols and lines as in figure 2.

viscous RDT.

Figure 12: Time development of the angle a =
tan‘l(m/ul__e) for G = Ge;. Symbols and lines as in figure
2.

CONCLUSIONS

The time development of a rapidly sheared homogeneous
turbulent flow in a rotating frame has been studied by means
of direct numerical simulations. In this geometry also the
turbulent transport of a passive scalar with a mean gradient
is investigated in order to study the effect of rotation on
mixing. The results of the DNS have been compared with
viscous rapid distortion theory. We come to the following
conclusions.

e The structure of a turbulent flow field and passive
scalar field change drastically and in a short time scale
when it is distorted by a rapid shearing motion and a
fast rotation of the system.

e The rotation speed of the system has a significant in-
fluence on the growth of the kinetic energy, anisotropy,
pressure-strain correlations of a sheared turbulent flow.

® Rotation has also a large influence on passive scalar
mixing in a turbulent flow. It affects the intensity of
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Figure 13: Time development of the angle a =
tan~!(u30/u180) for G = Gez. Symbols and lines as in figure
2.

the scalar fluctuations and the scalar-velocity fluctu-
ation correlations. Furthermore, rotation significantly
affects the direction of the turbulent scalar flux. The
flux is in general not aligned with the mean scalar gra-
dient.

e Comparison between DNS and RDT shows that vis-
cous RDT in general gives a good prediction of the
one-point statistics of the turbulent velocity and scalar
field for short distortion times. It seems therefore at-
tractive to make RSM consistent with RDT for short
distortion times.
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