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ABSTRACT

The purpose of this paper is to study the spatial struc-
ture of global instabilities, solutions of the partial derivative
eigenvalue problem resulting from a nonparallel linear insta-
bility analysis of the incompressible Navier-Stokes equations.
A family of Falkner-Skan profiles is analyzed for the on-
set of absolute instability as the magnitude of the reversed
flow and this family of profiles was used to construct generic
models of separation bubbles and study the possible onset
of global instability. This study will tackle the existence of
global instabilites in a boundary layer flow with a recircu-
lating bubble.

INTRODUCTION

Conventional linear instability theory, herein referred to
as Orr-Sommerfeld (OS) theory, can relate the essentially
nonlinear three-dimensional phenomenon of turbulence to
exponential amplification of small- amplitude perturbations
at certain frequency and Reynolds number. The limitation
of this analysis is that the steady laminar basic flow
upon which disturbances are developing is taken to be an
one-dimensional profile, with the flow being independant
of the other two spatial directions which are treated
as periodic. Such an assumption restricts the realm of
applicability of the OS theory to a small class of steady
laminar flows. If the condition of periodicity is one of the
two spatial directions may be relaxed on physical grounds
into one of slow growth, the concept of "Multiple Scales
analysis” (MSA) may be applied. However, only a weak
nonparallel flow can be studied with this approach. The
restriction imposed on the basic flows by the assumptions
inherent in the OS and MSA analyses may be relaxed
by considering an extension of the classic linear theory
in which the condition of spatial homogeneity in the
laminar basic state is required of one spatial direction only,
while the two other spatial directions are fully resolved.
The linearised system of equations which results may be
recast in the form of an eigenvalue problem in a maner
formally analogous to that of the one-dimensional OS
theory. This approach permits to tackle the case of strongly
nonparallel flows and thus essentially concerns the study
of two-dimensional instabilities. However, it is important
to specify a significant difference between two concepts
being able to be approached by this theory: the concept
of two-dimensional instabilities and global instabilities.
When the basic flow is naturally two-dimensional as, for
example, in the case of a rectangular duct flow (Tatsumi
& Yoshimura, 1990), the study of these instabilities is a
”simple” extension of the Poiseuille case. In this case, the
inhomogeneous space directions are transverse with the
flow direction, one can speak then about two-dimensional

instability. The stability analysis can be carried out by
a temporal or spatial analysis, and thus we have a local
convective two-dimensional instability. The case where the
basic flow is strongly nonparallel in the streamwise flow as,
for example, the beginning of the Taylor flow (Griffond,
2002) or the attachment line flow (Lin & Malik, 1996),
the concept of local instability loses sense, in this case
we can speak about two-dimensional or global instability
in the fact where resulting instability is valid on the all
field. However, there is a case where the concept of global
instability takes a different significance. When the flow
is slightly nonparallel (in this case the local instability
concept keeps all its significance) for example in the
separated boundary layer, Chomaz et al. (1991) have shown
that intrinsic global instability could exist if the basic flow
is absolutely unstable in a non zero restricted extension zone.

The principal objective of this analysis is initially to
study the global instability of a laminar separated boundary
layer solution to the Falkner-Skan equation. This analysis
will show that although the flow is not absolutely unstable,
it can nevertheless be globally unstable, showing of this fact
a dissension with the Chomaz et al. (1991) results.

BASIC FLOW

The general equations of motion for the instantaneous
flow are the Navier-Stokes equations. The present stability
theory is based on the classical small perturbations tech-
nique where the instantaneous flow is the superposition of
the known mean flow and unknown fluctuations. All the
instantaneous physical quantities Z (velocity and pressure)
are decomposed into a mean value and a fluctuating one:

Z(w,y,z,t)=Z($,y)+zf($7y,z7t): (1)

where the mean flow Z is not a priori supposed to be weakly
parallel, i.e. it depends on the z and y direction.

We consider a two-dimensional incompressible boundary
layer, with a non zero pressure gradient on finished por-
tion D in z (D = [zo;z4]). We assume that the mean
flow is governed by the incompressible boundary layer equa-
tions. The z-axis is taken along the direction of the flow,
the y-axis normal to the flow. Let (U,V,0) be the velocity
components in (z, y, z) directions, respectively. From a cer-
tain z-coordinate, it is well-known that the incompressible
boundary layer equations of plane plate, with or without
pressure gradient can be reduce to Falkner-Skan similarity
equations.

a8 (1-1%) =o, @

with the boundary conditions

n=0, f=f =0etn—ooo f — 1. (3)
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where (.)" = d(.)/dn and f (1) = T/T.(n) withn = y/A(x).
B represents the reduced pressure gradient and it is re-
lated with the physical pressure gradient by 8/(2 — 8) =
—z/ (peﬁz)dﬁ/ dz. Such solutions exist if the external veloc-
ity Ue(z) follows the law Ue(z) = kzf/(2=8), k represents
the external gradient velocity at the origin. A{z) is given
by A(z) = 2v2 = B/+/Re, with Re, = p.Uex/fi,. The

transversal velocity is given by:

Vi) 1 1 /1-8 1
U. \2-BE.. (2—ﬂ"f _Z—ﬂf)

The equation (2) is solved by using a shooting method on
the value of the skin friction coefficient in order to obtain
the attached and separated solution (8 < 0, f (0) < 0).
Fig. 1 shows the evolution of # according to z on the curve
giving the evolution of the skin friction coefficient versus to
B. Fig. 2 shows a sketch presenting the boundary layer and
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Figure 1: Evolution of skin friction coefficient f (0) versus
B parametred by the z-abscissa on the plate plane.

the different notations used. In particular, the different z-
coordinates z; j = 0,...,4 used in the calculation of stability
and the definition of the reduced pression gradient are de-
fined. In order to obtain a boundary layer bubble on a plane

Computational domain

Zo z1 z3 x4
Recirculation region

Figure 2: shows a sketch presenting the boundary layer and
the different notations used.

plate, the reduced pressure gradient 8(z) is a function to x
checking: B(z) = 3012, b;z’ where the b; are determined by
the following relations B(zo) = B(z4) = 0, B(z1) = B(z3) =
—0.1988, B(x2) = —0.04 and 8B(x;)/0z = 0,5 =0,...,4.
The choice of different z-coordinate is arbitrary, the plane
plate length is chosen such as x4 = L, zg = 0, 1 = L/3,
z3 = L/2, z3 = 2L/3 and R., = 10°. The choice of

B{z2) = —0.04 correspond to the maximum of the backflow
velocity.

THEORETICAL APPROACH

Perturbation form

The inherent restriction of slow growth of the basic flow
in the streamwise direction z assumed in the multiple scales
approach may be relaxed by fully resolving both this as well
as the wall-normal, y, spatial directions. A solution to the
equations of motion Z(z,y, z,t) is decomposed into a steady
two-dimensional basic and an unsteady three-dimensional
perturbation component according to (1). According to the
homogeneous form of the basic flow in cross-flow direction
z, the perturbation can be described as a normal mode:

Z(x,y,2,t) = eZ(z,y)ei(kz_“’t) +ce, el, (4)

where Z = (4, %,w,5)! is the eigenfunction vector.

Stability equations

The decomposition is substituted into the incompress-
ible equations of motion. In the temporal framework, as
considered here, k is a real wavenumber parameter and w is
the seeked complex eigenvalue whose real part indicates fre-
quency and whose positive imaginary part is the growth rate
in time t. The imaginary unit is i = v/—1 and c.c. denotes
complex conjugate in order for the physical field to remain
real. Linearisation about Z follows, based on the argument
of smallness of £ and the basic flow terms, themselves sat-
isfying the equations of motion, are subtracted out. With
the perturbation (4), the linearised Navier-Stokes equations
become a partial differential system:

M 62+M 82+M a+M a+M Z=0

1 822 28y2 4 9z 56y 6 -
(5)
where M, j =1,...,6 are real or complex (4 x 4) matrices.

The explicit form of the different matrices M ; are deferred
in appendix .

Stability equations and the basic-flow are nondimension-
alized by global characteristic scales like upstream free-
stream velocity Ue(zo) and by a reference length L. R. =
Ue(zo)L/ve is the global Reynolds number.

Boundary conditions

A study of the mathematical nature of the partial-
derivative equations system shows that it is elliptic system.
Moreover, in the case of an open flow system, the issue of
boundary conditions must be considered carefully with re-
spect to the plausible physical situations that one wished to
model.
In the y direction: on the wall and at the far-field, the usual
viscous conditions is employed

[@,%,w](z,0) = 0and gg(z, 0) =0, Vz € [zo, z4]
Y

. Lo . Op
m [6,9,9)(@,y) = Oand lim ég(x,y) =0, Vz € [0, za].
©)

In the z direction: Theoretically the different boundary
layer flows that we will study in this paper are convectively
unstable at inflow and outflow to the computation domain.
Consequently, the eigenfunction vector which defines the
streamwise structure of the disturbance field associated with

—300—



a global instability satisfies homogeneous boundary condi-
tions at inflow and at outflow like the vanishing of the
disturbance field asymptotically provided the flow is stable
at x = zp and z = 4.
In this paper, we will be interested only in global instabili-
ties and not in local instabilities like the Tollmien-Schlichting
waves present obviously from the beginning to the boundary
layer. These instabilities are not computed in a present ap-
proach and we will thus not take account of their influences
on the nature of the boundary layer, in particular in the sep-
arated zone where it is well-known that the existence of the
inflection point in the velocity profile is the high instabil-
ity sources likely to start the transition. We have adressed
this problem by imposing homogeneous Dirichlet conditions
on all perturbations at inflow, thus prohibiting any distur-
bances to enter the calculation domain and allowing only
those generated by the presence of the steady laminar sepa-
ration bubble.

Finally, at the outflow boundary linear extrapolation of
all disturbance quantities from interior of the integration
domain is considered. '

— —

4, 9,%)(0,y) = 0 and $(0,y) =0, Vy € [0, ym]
@

,¥,W](x4,y) are extrapolated and Dz, y) verify :

op 1 8% 1 0% _0u 89 ov

== ~UT=-VZ -2 ikTw—
g Roost  Rop Uoe Vay oy TUD

T
oUu k|
% + R‘e — 20.)) u, vy € [q,ym]~

U]

NUMERICAL APPROACH

The partial differential stability equations (5) are discre-
tised to use an algorithm based on the collocation method by
ng and ny order Chebyshev polynomials respectively. For
more details on the method see Malik (1990). Finally, Egs
(5) with the boundary conditions may be represented as

(A~wB)¢ =0, (8)

{Zidicon )iy,
tem (8) represents the dlscretlzed elgenvalue problem. The
Chebyshev interval (¢;,¢;) € [0,1] x [0,1] is transformed to
the computational domain D by use of the mapping in z and
y directions respectively

with ¢ = The algebraic sys-

1
z = —arccos({) (uniform grid)

m 2 9
y:af——, with a = yaﬁy——andbz 1+—a.
b—¢ (ym — 2ya) Ym

In your case y, ~ §, where § is the boundary layer thickness
and ypm, ~ 305. A standard eigenvalue subroutine may now
be used to compute the dim(Z) x (n, + 1) X (ny + 1) eigen-
values. Two methods were used to solve the equation (8):
a local method based on a shooting method with a classical
Newton-Raphson algorithm and a global method, where the
discretized operator spectrum is computed by an Arnoidi
algorithm.

RESULTS

Quasi-analytical global instabilities

Absolute instabilities. As envisaged by the previous stud-
ies (Hammond & Redekopp, (1998), Robinet, (2001)), the

bubble flow solution to the Falkner-Skan equation is not ab-
solutely unstable for all frequency and Reynolds number.
The figure 3 gives the evolution of the absolute circular fre-

Re(w,)
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Figure 3: Absolute growth rate Im(wo) and absolute fre-
quency versus X.

quency (Re(wo)) and the absolute temporal amplification
rate (Im(wo)) according to X. For all X, the amplification
rate is always negative and consequently the basic flow is
not absolutely unstable.

Global instabilities. The global stability analysis of lam-
inar bubble can be studied by another approach where the
weakly nonparallel flow (y = O(1), ¢ = O(e)) is taken into
account. This appraoch was already realized by Hammond
& Redekopp (1998) for a symetric bubble, less representative
of a real laminar bubble. This analysis consists in studying,
at first, the convective-absolute transition from the local
instability of the velocity profil U(y; X) where X = z/e
with £ <1 is taken as a parameter. Although our basic-
flow is identical in these theoretical principles to that of the
Hammond & Redekopp (1998), our laminar bubble is not
symmetric as can see it the evolution of the different inte-
gral quantities (41, 6 and H) in figure 4. After to determine
the absolute circular frequency wo(X) and the absolute wave
number ap(X) respectively, a linear evolution model for the
streamwise structure of a possible global instability is devel-
oped and based on the following truncated approximation
of the dispersion relation close to the absolute circular fre-
quency

1 8%w

Oow
— @o(X))?, with — =0.
2 5oz (@~ @0(X))%, wi 70 (20)

w(X) = wo(X) + =

In the following, we suppose that 6%w/8a2 < 0, Vz € D
to satisfy the causality. Contrary to the previous section,
the transverse dependency of the fluctuation is not directly
taken into account, it involves very indirectly through the
values of wo(X) and ag(X). Consistent with WKBJ the-
ory, we assume that the parameters vary in the streamwise
direction on the slow scale X = ex. The linear evolution
equation compatible with the dispersion relation can then
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Figure 4: Evolution of Boundary layer thickness §, displace-
ment thickness 8, momentum thickness # and shape factor
H.

be expressed in the form

i (BA 92w BA) 1 8%w 82A
i — —ao(X)=—— e
ot do? Oz R 2 Ha2 Oz (10)
1, &%w
— (wg(X) + an(X)w) A=0.

A global mode, solution of (10) can be search as

i )fao(x')dx' )
Az, t;e) = ¢(X;e)e X e~ Wwat, (11)

where wy is the global mode frequency. The modal
eigenfunction ¢(X;e) defines the streamwise structure of
the fluctuating field associated with the global instabil-
ity. Chomaz et al.(1991) employed the linear, variable-
coefficient, Ginzburg-Landau equation (10) to determine
generic criteria for onset of a global instability ans its fre-
quency selection. In particular, they demontrated that the
saddle point position defined by dwo(Xs)/8X = 0, where
X, is an generalized abscissa (in general complex), is the
appropriate position about which the variable coefficients in
(10) should be referenced. They also showed the the leading-
order estimate for the frequency of oscillation of the gravest
global mode is given by Re(wo(Xs)). This eigenfunction
must satisfy homogeneous boundary conditions, like the van-
ishing of the disturbance field in z = ¢ and z = x4 because
the flow is globally stable at these abscissa. Under these
hypothese, the evolution equation in X can be written as

, d%¢ 2wg — wo(X Cdap
52(1)(—2 [_————6(325)/6()(2&)(;) +Z€E(X)] ¢(X,E):0,
#(Xo;€) = ¢(Xa;¢) = 0.
(12)
The functions wo(X), ao(X) and 82w/da?(X) are numeri-
cally determined and ¢ which represents the global estimate
of the nonparallelism of the flow and can be estimated by

V(X,y)

€ max max _——>, and must be £ € 1 so

X €[X0,Xa] \y€[0, 4] U(X,y)
that the WKBJ approximation is valid. For this bubble, ¢
is in the most equal to 0.021. The differential equation (12)
is solve with a classical spectral collocation method and the
eigenvalues spectrum obtained is presented in Fig. 5. This

analysis confirms the results obtained by the local instabil-
ity studies, so that a global instability exists, it is necessary
that there is a finished extension zone where the instability
is absolute. However, in this reduced model, we focus ex-
clusively on the streamwise development of the disturbance
field, completely suppressing any dependence on the cross-
stream (y) or eigenfunction direction.
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Figure 5: Discretize eigenvalue spectrum for the reduced
model.

BiGlobal instabilities
In order to be independent of the different assumptions
related on the linearized Ginzburg-Landau model, in par-
ticular from the absence of cross-stream dependence of the
fluctuation, a two-dimensional stability analysis (5, 6, 7)
is performed. These equations define an partial differen-
tial eigenvalue problem and yields the dispersion relation
F(w, k; Re) = 0. The following calculations were carried out
for np = 50, ny = 46 points. Figure 6 shows the eigenvalue
spectrum in the neighbourhood of w = 0 and for different
values of spanwise wavenumbers k. Several unstable modes
are observed, the stationary (Re(w)=0) modes and the trav-
elling modes (Re(w) # 0). The travelling modes appear
in symmetric pairs, indicating that there is no preferential
direction in z. However, the most unstable mode is a three-
dimensional stationary disturbance. Figure 7 presents the
evolution versus spanwise wavenumber k of the global tem-
poral amplification rate for the two most unstable modes
(one stationary mode and one travelling mode). These un-
stable modes are not predicted by Chomaz approach. This
difference can come from the taking into account of the
cross-stream dependence at the same time as the stream-
wise dependence. Most of the activity in all disturbance
eigenfunctions is confined within the boundary layer and is
located in the separated zone. Figure 8 shows the amplitude
of the velocity components and the pressure distribution of
the unstable stationary global mode. The three-dimensional
character (where | W |# 0) is high around the reattachment
point. The essential of the fluctuating activity (| @1, |9 1) is
confined in the center of the bubble. For the pressure fluc-
tuation, The maximum in amplitude is located close to the
shear layer and extend slightly outside the boundary layer.
The effect of the presence of the stationary unstable mode
on the laminar basic flow is very different for respectively
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Figure 6: Discretized eigenvalue spectra for the separated
boundary layer flow for different streamwise wavenumbers
k=0,5,10,15,20.
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Figure 7: Evolution according to k of the amplification rate
for the two most unstable modes.

the center of the bubble or the separation and reattachment
points. While the separation and reattachment lines remain
unaffected in the presence of a linearly unstable mode, the
bubble center of the basic flow at sufficiently high ampli-
tudes of the linearly unstable mode is divided into three
distinct zones (separated, reattached and separated) where
speeds are opposite signs. Between the two primary sepa-
ration and reattachment point a secondary separation and
reattachment points are linearly generated. Fig. 9 shows
this characteritics. Similar results have been obtained by
Theofilis et al. (2000) for a laminar separated boundary
layer resulting from a Navier-Stokes calculation. They have
shown that there is a three-dimensional stationary global
mode solution. However, these authors do not indicate if
an absolute instability zone exists and they do not specify
the link between this global instability and global instability
concept defined by Chomaz (1991).

CONCLUSIONS
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Figure 8: Normalised disturbance velocity componants and
pressure distribution amplitude of the unstable stationary
global mode for R., = 10% and & = 20.

The topic of this paper relates the existence of global
instabilities, inaccessible to local analysis, in a separated
flow. Solutions to the partial derivative eigenvalue problem
have been performed, which correspond both to stationary
and travelling global instabilities which are periodic in the
spanwise z direction. These unstable global modes are not
obtained by an quasi-analytical approach similar to that car-
ried out by Hammond & Redekopp (1998). This difference
seems to come from the taking into account the exact non-
parallelism of the flow and permitting to treat the behavior
of low frequency instabilities correctly and moreover the tak-
ing into account of the cross-stream dependance at the same
time as the streamwise dependance should play an impor-
tante role in this discrepency between the BiGlobal approach
and the Quasi-analytical global approach. From the point of
view of control the laminar-turbulent control by the inhibi-
tion of the instability mechanisms, for the separated flow, it
is clear that current efforts focussing exclusively on convec-
tives instabilities are bound to fail if the control mechanisms
do not take account of the unstable global modes. More
precisely, when the most unstable mode is stationary, the
control methods based on the unstable mode frequencies are
not adequate.
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component.
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APPENDIX: MATRIX FORMS

0 0 0 0
1
— 0 0 o
R,
M= 0 1 o o M3 =0
Re .
0 0 — 0
Re
1 0 0 0
U 0 0 -1
My = o -T o o0
0 o -U o
0 1 0 0
-V o0 0 0
Ms = 0o -V o0 -1
0 0o -V o
0 0 ik 0
U aUu 0
Oz Oy__
Mg = __8_V _ 8_V 0 0
Oz Oy
oW oW )
ERALS - —ik
ox dy

with A = — & —i(kW — w)
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