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ABSTRACT

The effect of the electric double layer (EDL) on
the linear stability of Poiseuille planar channel flow
is reported. It is shown that the EDL destabilises the
linear modes, and that the critical Reynolds number
decreases significantly when the thickness of the
double layer becomes comparable with the height of
the channel. The planar macro scale Poiseuille flow
is metastable, and the inflexional EDL instability
may further decrease the macro-transitional
Reynolds number. There is a good correspondence
between the estimated transitional Reynolds
numbers and some experiments, showing that early
transition is plausible in microchannels under some
conditions.

INTRODUCTION

The characteristics of gas flows in microchannels
can adequately be modelled by slip velocity and
temperature jump related to first or second order
models as a function of the Knudsen number, at least
in the rarefied regime. Such molecular effects are
difficult to model in micro-liquid flows. Yet,
estimations obtained from some molecular models
indicate that the discontinuous boundary conditions
could only hold for microchannels of hydraulic
diameters smaller than few microns (Gad-el-Hak,
1999, Tardu, 2003). The interfacial effects
(wall/liquid) are presumably mostly responsible for
the deviations observed from the classical macro-
theory, in larger microchannels. One of the micro-
effects that may play an important role is the electric
double layer (EDL) at the solid/liquid interface. The
electrostatic charges present on the solid surface
attract the counterions to establish an electrical field.

In the compact layer next to the wall the ions are
immobile. In the diffuse EDL layer however, the
ions are less affected by the electrical field and can
move. Under the effect of an imposed pressure
gradient, the accumulation of the mobile ijons
downstream sets up an electrical field that induces a
streamwise external force. In macroscale flows,
these effects are negligible, as well as the thickness
of the EDL is very small compared to the height of
the channel. In micro-flows, in return, the EDL play
a rather significant role. Well-controlled recent
experiments have clearly confirmed that it can

explain the behaviour of the Poiseuille number in
laminar regime, providing that the liquid contains a
very small amount of ions (Ren et al. 2001).
Kulinsky et al. (1999) reported an increase of 70%
of the friction factor under the EDL effect in planar
channels of 4 zm heights with distilled water. Large

thickness of the diffuse EDL layer of about 1 z#m or
more have been reported in these experiments.

There is a curious phenomena encountered in
some experiments showing that there is an early
transition in microchannel flows. Weng and Peng
(1994) noticed that the transition occurred at
Re<150 in microchannels 0.2-0.8 mm wide and 0.7
mm deep, which is significantly smaller than 400
corresponding to macro scale flows (The Reynolds
number through this paper is based on the centreline
velocity and half height of the channel. Thus 400
correspond to a Reynolds number based on hydraulic
diameter and cross section average velocity of
2000). A transitional number of about 250 has also
been reported in the experiments conducted in Imm
wide trapezoidal microchannels with channel depths
ranging between 79 and 325 um (Rahman and Gui,
1993 a and b, Gui and Scaringe 1995). The micro
tubes experiments of Mala and Li (1999) indicate
that there is an early transition from laminar to
turbulent flows for Re>56-170. These effects may
be attributed to the roughness that may both
influence the transition in the entry region, or
directly affect the flow behaviour through an implied
roughness-viscosity (Weilin et al., 2000). Yet, direct
interfacial effects may also play a role in presumed
early transition.

The stability mechanism in planar channel flows
is mainly non-linear and the secondary instabilities
cause the flow to bifurcate before the critical
Reynolds number of linear modes. That depends on
the behaviour of the time space development of the
perturbations near the critical Re and wave
numbers. The main aim of this study is to investigate
directly the EDL effect on the linear stability of
planar channel flow, and estimate indirectly the
resulting transitional Reynolds numbers. It is asked
whether electrokinetic effects on liquid flows may
cause the early transition or not and whether the
linear stability EDL flow characteristics may explain
the small transitional Reynolds numbers encountered
in studies quoted to before.
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PHYSICAL ASPECTS OF ELECTRIC
DOUBLE LAYER

Most solid surfaces have an electric surface
potential when brought with an electrolyte. The most
common mechanism for the charging of surface
layers in microfluidics is the depronotonation of
surface groups on surfaces such as silica, glass,
acrylic and polyester (Hunter, 1981, Sharp et al,
2002). The electrostatic charges present on the solid
surface attract the counterions to establish an
electrical field . In the compact layer next to the wall
and less than 1 nm thick the ions are immobile. In
the diffuse EDL layer however, the ions are less
affected by the electrical field and can move. The
counterion concentration near the wall is larger than
in the bulk of the fluid. That results in a net charge
density in a unit volume resulting from the
concentration difference between cations and anions,
according to the Boltzmann equation. The
electrostatic potential at any point near the surface,
provided that it is small compared to the energy of
ions, may be obtained by a linear approximation of
the Poisson-Boltzmann equation. Its value at the
wall can be related to the Zeta potential between the
compact layer and diffuse layer, when the EDLs near
the opposite walls do not overlap. The Zeta potential
is a property of the solid-liquid pair and can be
determined experimentally. The imposed pressure
gradient accumulates the mobile ions downstream
and sets up an electrical field whose potential is
called the streaming or electrokinetic potential. The
streaming potential and the net charge density
induces a streamwise external force. In the steady
state, the streaming current due to the transport of
charges is in equilibrium with the conduction current
in the opposite direction. That allows the
determination of the streaming potential and of the
velocity profiles under the EDL effect.

EQUATIONS GOVERNING 2D CHANNEL
FLOW UNDER THE EDL EFFECT

We suppose constant properties (viscosity and
permittivity). The effects of finite ion size and
gradients of the dielectric strength and of the
viscosity are neglected. These hypotheses are not
contradictory with the fact that we mainly deal with
very dilute solutions for which the equilibrium
Boltzmann distribution is applicable. The velocity
profile under the electrokinetic EDL effect obtained
by Mala et al (1997) can be put in non-dimensional
form as:
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where, the scaling velocity is the centerline velocity

a’dp| dx
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the scaling length is the half channel height a . There

are several parameters in this equation, for instance

2
G=M, with n ¢ standing for the ionic
Aok
number concentration, z for the valence of positive
or negative ions, e for the electron charge A ¢ the
electric conductivity of the fluid, and g for its
dynamic viscosity. One of the most important
quantities involving in (1) is the non dimensional
Debye-Huckle parameter
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with ¢ and & being respectively the dielectric
constant of the medium and the permittivity of
vacuum, k , the Boltzmann constant and T the

absolute temperature. The characteristic EDL
thickness is 1/k. The non-dimensional Zeta
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It is seen that the velocity profile can be
decomposed into a macro Poiseuille component plus
an EDL effect component. A closer inspection of (1)
allows expressing the later in another close form as:
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The parameter Ao u is the non-dimensional
electrical conductivity times the dynamic viscosity
of the fluid. It can be seen that the scaling parameter
for A ¢ u is the square of the scaling charge density

times the scaling length, i.e. (p sl k)2 leading to:
— Ao s
Aopu= 5
oA (noé‘é‘oka/Z) ()
There are three parameters governing the EDL
effect, namely
uEDL=uEDL(K,C,/10ﬂ) (6)
Gradients of the dielectric strength, viscosity and
conductivity should be incorporated in more realistic
models. Yet, these effects are presumably negligible
in significantly dilute solutions, such as deionized
ultra filtered water (DIUFW) and pure organic
liquids.
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The main EDL effects may be summarized as
follows:

*  Anincrease of the friction constant and apparent
viscosity.

* A decrease of the Nusselt number.

These effects are persistent yet not significantly
important at least for large values of x. The
apparent viscosity increases for example by a factor
of nearly 3 at x =2, but the EDL effect on the wall
shear stress disappears quickly when « >10 (Mala et
al., 1997). The Nusselt number decreases by nearly
40% at k=5, and less than 5 % at x =50 (Tardu,
2003).

INFLEXIONAL INVISCID INSTABILITY

The EDL effect is undoubtedly significant for
small values of x for the liquids containing a very
small number of due for example to impurities. In
such situations the thickness of the diffuse layer may
reach several micrometers. Fig. 2a compares the
velocity profile of an “ EDL flow” with the
conventional Poiseuill_e flow, when
k=41,G=12720 and ¢=2.1254. This case
corresponds to the flow- of an infinitely diluted
aqueous solution (#n ¢=3.764 x 10" m '3) through a
microchannel of height 100 um subjected to a Zeta
potential of 50 mV. The Debye length is 1.2 um,
which is close to the value corresponding to the de-
ionized ultra-filtered water experiments of Ren et al.
(2002). The first impression one has from Fig.2a is
the close similarity between the EDL and Poiseuille
profiles with a decrease of the centreline velocity
typical to the EDL flows. The increase of the friction
constant is only 16 % in this situation. The important
difference however is the presence of an inflexional

Fx

profile where » is the ratio of the EDL and
Poiseuille flow centreline velocities. This makes the
flow inviscidly unstable, according to the Fjortoft’s
criteria (Fig. 2b). The inviscid instability does not
imply instability directly in wall flows and an Orr-
Sommerfeld analysis is necessary.

i 2
point at y ~— arcsin h{ -—3 sinh(x )} in the EDL
K

STABILITY ANALYSIS

The linear hydrodynamic stability under the EDL
effect is studied through classical methods. The Orr-
Sommerfeld equation is solved by a Galerkin-like
procedure (Von Kerczek, 1982). The normal mode
solutions of the disturbance equation are:

(u,v,p):R(z?,fz,fy)exp(iax) @)
R is the real part,  is the dimensionless wave-

number of the disturbance and x is the streamwise

coordinate. Introducing the stream function:
vy (x.0t)=¢(y,1) exp(iax) ®

the Orr-Sommerfeld equation takes the form:

2
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with the boundary conditions 415=ﬂ—j)j =0 at y=%1.
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The operator L is L=——-a
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function is expanded in a Chebyshev polynomial
series:

N
$(31)=2 an ()T 20, (») (10)
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2. The stream

where T ,,(y)=cos (m cos ! y ) denotes  the

Chebyshev polynomials of the first kind. We took
N =256 through this study. Eq. 9 takes the form:

Q%z(P—iaJ)'a an

and the matrices are determined by making use of
the t-method described by Orszag (1971). The last
equation can be written as:
—=D.b 12
dt (12)
by introducing B the matrix that diagonalizes
Q! (P-ial), b=B!a and the diagonal
matrix D=4 ,5;; =1 -Q_l-(P—iaJ)-B. The
eigenvalues are denoted by A, and the flow is
unstable when R(l,-)>0. The disturbances with
symmetric streamfunctions are considered only. The
method gave very close results to Grosch and

Salwen (1968) who used different sets of expansion
functions.

RESULTS

Fig.2 shows the neutral curve corresponding to
the microchannel-flow with the parameters given
below, together with a “macro” Poiseuille flow
(i.e.{=0o0r x > o). It is clearly seen that the
critical Reynolds number decreases by a factor
nearly equal to 2 under the effect of EDL: the
critical wave and Reynolds numbers of the
microflow are respectively «a, =110 and
Re . =3190 to be compared with a, =1.02 and
Re . =5772 of the conventional Poiseuille flow.
Due to its inviscid inflexional instability (unstable
for Re—> o for a given «), the band of unstable
wave numbers of the EDL-microflow is significantly
larger compared with the Poiseuille-macroflow. The
destabilizing EDL effect disappears quickly when
the height of the channel is increased by a factor of 4
(400 pm) (triangle in Fig. 2 corresponding to
x =163). This goes in the same line as previous
experimental results showing the lack of micro-
effects for the microchannels of height larger than
typically 100 pm. For smaller values of x , in return,
the effect of the interfacial effects caused by EDL on
the transition may be much more severe. For
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instance, the critical Reynolds number decreases up
to Re_.=1042 for a channel with a 40 pm
separation distance subject to the same conditions
(the square in Fig. 2 with x =16, and to a value as
small as Re . =496 when x = 8. It is clear that one
of the most significant effect of EDL is the decrease
of the critical Reynolds number, rather than the
increase in friction coefficient or the apparent
viscosity. For k¥ = 40, the friction factor increases by

some 7%, but the critical Reynolds number
DECREASES by 100%.

Fig. 3 shows the spectrum of eigenvalues as a
function of Refor a single fixed wave-number a =1
and x =16. Only the first three eigenvalues
corresponding to the complex wave speed
c¢=-A[iaare shown for the sake of clarity. The
modes are ordered in such a way that ascending
values correspond to descending values of Im {c},

ie. of R{A}. Remind that the flow is stable
(unstable) for R{l}<0 (>0). The Re number was

varied from 300 to 20.10°. The curves
corresponding to Poiseuille and EDL-flows are
denoted respectively by P-i and E-i. It is seen in
Fig.3 that only the first mode has a different Im {c}
under the EDL effect and that the imaginary parts of
higher modes collapse entirely with those of the
macro scale flow. Note however that Im {cl_ EDL }is
much more positive than Im {¢1_pojseuie yshowing
the strong destabilizing effect of the EDL. The EDL
modes are slower than the Poiseuille ones, in the
sense that R {iEDL }is smaller than 2/3 which is the
average velocity of the channel, while the modes 2

and 3 of macro scale flow are clearly fast modes
(their phase speed is close to the centerline velocity).

DISCUSSION AND CONCLUSION

The macroscale Poiseuille flow is metastable; i.e.
the corresponding stability is subcritical. Non linear
analysis shows that the instability may occur with
finite amplitude when all infinitesimal disturbances
are stable (Drazin and Reid W.H.,1981). There is a
significantly lower critical value of the Reynolds
number Re ; compared to Re ., above which the
flow is unstable and below which there is no
bifurcation. The exact theoretical determination of
Re  is still a matter of research. Experiments show

Re 1000 1
that —% ~——~—. The transitional Reynolds

Re, 5772 6

number depends on the shape and shape factors of
the channels.

The Poiseuille flow is monotonically stable only
for Re<100 to be compared with 5772. The

transitional Reynolds number Re ; of channel flows
is about 400 according to experiments (2000 based

on the hydraulic diameter and channel averaged
Re

velocity). Thus, the ratio =X <= in macroscale
Re . 15

Poiseuille flows.

The main non-linear stability mechanism in
Macro Poiseuille flow is due to a secondary
instability with the development of spanwise
inflexion with strong shear (Itoh, 1974). In the EDL
flow there is already a streamwise inflexion point in
the base flow. Thus the Reynolds numbers Re ¢ and
Re ; should be much lower under the EDL effect. A
non-linear analysis is necessary to check out this
point but the first stage is then the determination of
the marginal curve which is done here. Some
arguments on the reinforcing effect of the EDL on
the subcritical nature of the macro Poiseuille flow
may however already be given. The square of the
amplitude of a finite disturbance is given by:

2
i
=2a ¢ lA1|2+(k1+k2 +k3]A1|4 (13)

dt

according to Stuart (1960). The flow reaches a
subcritical equilibrium state when k; +ky + k3 >0.
The coefficient kj represents the distortion of the
mean motion: it is related to the eigenfunctions of
the linear stability problem, and it is negative. The
coefficient k , is linked to the generation of the
harmonic of the fundamental and is also likely
negative. The wall normal distortion of the
fundamental (k 3) must “ be positive and outweigh
the combined negative effect of k) and k , to reach
a subcritical state”. Now, k is proportional to

Recocc2 (Eq. 6.3 in Stuart). It has therefore a
significantly smaller negative contribution to
ki + k2 + k3 under the EDL effect. Furthermore, part
of the terms involving in the coefficient k3 is
inversely proportional to Re. according to the
equation 6.5 of Stuart (1960) and the EDL
presumably reinforces the positive character of &3

in the subcritical state.

The experimental verification of the linear
stability results is difficult because of the subcritical
character of the stability mechanism, and the
difficult control of the level of turbulence at the inlet
(Nishioka et al., 1975). That also rises the question
of the EDL effect on the stability in the developing
region. It is also somewhat difficult to reach such
high Reynolds numbers in microchannels, even
though one may consider the possibility of Debye
lengths larger than 1gm, thus higher channels

compared with the numerical example given before.
Well-controlled experiments are certainly more
difficult in microchannels. Yet, it should be possible
to detect the EDL effects on the transitional
Reynolds number by classical Re-pressure gradient
curves. Table 1 shows the expected transitional
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Reynolds numbers under the EDL effect as a

. . Re .
function of x . The ratio -——LR = 1—5 is taken same as
€

c
in macro channels, although, it is more than likely

Re
that L
Re .

is significantly smaller under the EDL

effect according to the arguments given above. We
will show in the presentation that the expected
transitional Reynolds number is within the range of
experimental possibilities. For larger channel of
typical height 100 um or so, the critical Reynolds
number should also be measured, at least in
principle. The experiments are limited to small
Reynolds numbers for microchannels of height
smaller than 20 um, because very high pressure is
then necessary and the channels will then break.

The transitional Reynolds numbers reported by
some authors indicating early transition in
microchannel liquid flows agree also qualitatively
with the estimation given here. All of these
experiments have been conducted with DIUF-W but
the channel wall material may be different from one
experiment to the other. In lack of experimental
details it is hard to give definitive conclusions. Yet,
there is a satisfactory agreement between the
estimated theoretical Re , and the measurements, in
particular with those of Weilin et al. (2000) as it will
be shown in the oral presentation. These authors
indicated that “the range of Re, values varies
somewhat, depending on the hydraulic diameter and
the material of the wall” pointing at a plausible EDL
effect.

To conclude, the EDL destabilizes the linear
modes of the Poiseuille channel flow and early
transition in microchannels is plausible. This effect
can be experimentally checked, provided that the
liquid contains a very small amount of ions and the
channel height is sufficiently small. In practice that
would require the use of DIUF-W or organic liquids,
. and channel heights larger than 20 gm (but smaller
than typically 100 m) for the feasibility problems
(microchannel failures at high pressures). There is
no effect on stability for liquids with high ionic
concentration and/or mini channels. The non-linear
stability analysis of the EDL flow is necessary,
although physical considerations indicate a much
more rapid transition compared to macro flows.
Direct Numerical Simulations can also be helpful to
this end. Controlled experiments in a way similar to
those reported by Ren et al. (2002) have to be
conducted, by keeping the same channel with the
same roughness distribution, and changing the ionic
concentration of the liquid. The fact that the
channels cross-section shape, in particular the
corners have important contribution to the EDL field
have also to be considered (Yang et al., 1997, 1998).
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Figure 1 EDL and Poiseuille velocity profiles (a), and the inflexional instability of Fjortoft type (b). The
parameters of the EDL flow are given in the text. The broken line in (b) corresponds to Poiseuille flow with
x = and the circles to the k =41 EDL flow. I. shows the inflexion point The inviscid instability is of Fjortoft
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Figure 2 Neutral curves of the EDL flow compared with the Poiseuille flow. The open circles correspond to
Poiseuille flow with £ = . The results of Grosh and Salwen (1968) are shown by small bold squares. Bold

circles correspond to k =41,G=12720 and Z’=2. 1254. The rest of the results are obtained by changing the
microchannel height and keeping constant the rest of the parameters.
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Figure 3 Real (left) and imaginary parts (right) of the first three eigenvalues versus Re,a =1 and x =16.
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