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INTRODUCTION

We reconsider the problem of shear-free turbulent dif-
fusion with no production due to a mean-velocity gradient.
Turbulence is generated at the plane z; = 0 and diffuses
in the direction z; > 0. Turbulence is homogeneous in
the z2-x3 plane. This problem was first considered by Lele
(1985) raising the question whether a turbulent diffusion-
wave exists by analyzing the k-¢ model. In the following we
show, based on the infinite sequence of multi-point correla-
tion equations, that a variety of invariant solutions (scaling
laws, see e.g. Oberlack 2001) of the diffusion problem ex-
ist employing Lie-group a.nalys1s (see e.g. Bluman & Kumei
1989).

LARGE- AND SMALL-SCALE EXPANSION OF THE
MULTI-POINT CORRELATION EQUATION

For the subsequent analysis we employ the multi-point
correlation (MPC) which is believed to properly model the
statistical quantities of turbulence at all scales. In order to
write the MPC equation in a compact form we introduce the
definition

at n+1 points where u; . denotes velocity fluctuation about
the mean velocity @i, at the point @k). With this def-
inition at hand it is straight forward to derive the MPC
equation from the Navier-Stokes equations (see Oberlack,
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The notation in square brackets denotes the replacement
of certain variables or indices with some other quantities
standing on the right hand side of the arrow. Each ©-
equation of the tensor order n+1 only contains one unclosed

term of the order n+2. For any of the remaining terms such
as P; (a3t exact equations may be derived from the conti-

nuity equation or the Poisson equation for the pressure (see
e.g. Oberlack, 2000a).
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For simplicity we will proceed with the two-point corre-
lation equation which has similar structure as the full set of
multi-point correlation equations. In particular, it has the
same symmetry properties. In order to simplify notation we
introduce the short form

Ri{z} = Rii(x) = Rij. (7

For this case equation (2) reduces to (see e.g. Rotta, 1972)
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where the difference between two points has been introduced
according to

T = XT(0) T = L) — T©) with I=1,...,n. (9)

The vectors p'u’; and uip are special cases of P, sy K]
defined according to
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For the two-point case the continuity equations simplify
to
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For the derivation of invariant solutions of shear-free tur-
bulent flows below we need to investigate the symmetry
properties of the multi-point correlation equations. In Ober-
lack (2000a) it is shown that all symmetry groups of the
Euler and Navier-Stokes equations are linear transforma-
tions (see e.g. Ibragimov, 1995/1996) and hence uniquely
map to a set of new symmetries for the multi-point correla-
tion equations.

For the understanding of large Reynolds number turbu-
lent flows it is important to note that the Euler equations
admit one more scaling group compared to the Navier-Stokes
equations (see e.g. Oberlack, 2000b) . It is in particular this
additional scaling group which is crucial to understand tur-
bulent scaling laws.

In order to “recover” this additional scaling group though
the MPC equations contain viscosity we have to adopt these
equations in a form derived from a singular asymptotic ex-
pansion first suggested in Oberlack (2000a). Therein it was
proven that similar to the laminar boundary layer equations
we may separate the correlation equations into an inner and
outer equation corresponding to small- and large-scale tur-
bulence. The inner equations cover the inertial range and
the dissipation range. The outer equations include all large
scales down to the inertial range. The inertial range is the
matching region.

The following boundary layer type of expansion for small
r is based on the turbulent Reynolds number
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where the integral length-scale £; and the Kolmogorov length
scale ng are respectively defined as

N
b= — Rirdr and nx = <?) (13)

Vr
and K and ¢ are the turbulent kinetic energy and the dissi-
pation of turbulent kinetic energy.

The outer part of the asymptotic expansion in r-space,
i.e. the domain g < 7, is obtained by taking the limit
1/Re; — 0 or v — 0 in the equations (8) yielding
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It is apparent that the latter equation is not valid in the
limit r — 0 since no dissipation is contained which becomes
important as r — ng.

The inner part of the asymptotic expansion of the corre-
lation function may be obtained by introducing the singular
expansion
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The pressure-velocity correlations p’v’; and ujp’ are deter-
mined by the Poisson equation and hence are not indepen-
dent of the velocity correlations.

SYMMETRIES AND INVARIANT SOLUTIONS OF THE
CORRELATION EQUATION

Since the multi-point equations of different tensor order
have similar structure, in the following we solely present the
two-point correlation equation. It is important to note that
all results to be presented below are fully consistent with all
higher order correlation functions up to infinite order.

We are primarily interested in large-scale quantities such
as the Reynolds-stress tensor or the integral length-scale and
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hence we adopt the large-scale two-point correlation equa-
tion (14) which for the present flow of shear free diffusion
reduces to
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extended by the kinematic conditions for the correlation
functions derived from the continuity equation
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For a non-rotating frame of reference (2 = 0) the equa-
tions (17) and (18) admit the following classical symmetries
in generator form

X“:z‘%”"a%”&jﬁ%J’“" (19)
Xst=t%—2Rij5%+..., (20)
Xa =%, (21)
Xt:%, (22)

where dots denote additional higher order correlation func-
tions which have been omitted.

Employing Lie’s first theorem we may rewrite the sym-
metries in global form

Top: t* =t , ] =e*zy

r* =e¢r , R*=e¢?R, ., (23)
Ts,: t"=e%t, zt=u2,

r=r, R*=e 2%2R | ... (24)
Toy s t* =1t , zi =z; +ag ,

r=r, R*=R, (25)
Ti: t*=t+4ay , =z ,

rT=r, R* =R, (26)

which respectively correspond to scaling of space, scaling of
time, translation in space and translation in time. The ai’s
are the corresponding group parameter. Again dots refer to
the omitted correlation functions.

Note that the equations (17) and (18) admit additional
symmetries which may not be employed for the present pur-
pose to derive scaling laws: Galilean invariance, rotation
invariance about z; and all three refiection groups for £ = 0.
If rotation about z1 is considered the reflection groups in the
T2-z3 plane are not admitted.

From a given set of symmetries we know from basic group
theory that also any linear combination of them is a new
symmetry. Hence we may combine all of the latter symme-
tries and rewrite the resulting symmetry in generator form

X = a1Xs, + a2Xs, + a3Xz, + agXy. (27)

The latter combined generator may be rewritten to ob-

tain the separated infinitesimals

€z; = a121 + aa,
& = aat + aq,
57‘10 = a1Tg, (28)
NRy; = 2(a1 — a2)Ryj,

Invoking the condition of an invariant solution we obtain
(see e.g. Bluman & Kumei, 1989)

dzy dt
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(29)
where indices in brackets indicate no summation. Depend-
ing on the scaling group parameter a; and ay we distinguish
three different cases. In the following we employ the abbre-
viation

m=22_1, (30)
ay

Turbulent diffusion with spatially growing integral length-
scale (a1 # 0, ag # 0)

Integration of (29) leads to a set of invariants which are
taken as the new independent and dependent variables

T1 + Zo P T
(t+to)1/(m+1) ! 1+ Zo ! (31)
Rij(z1,t,7) = (21 + 26) 2™ Rj(51,7), ...,

Z =

where here and in the following subsections the constants To
and ¢, are combinations of the a;'s. The key achievement
is that the variables (31) lead to a similarity reduction of
(17)/(18). From (13) and by invoking the one-point limit in
(31) we obtain

i (zy,t) = (3 +xo)*2mu§u;(5:1) and

- (32)
Li{z1,t) = (z1 + xo)et(ftl),

where Z; is taken from (31).

The corresponding dissipation function may immediately
be taken from the small-scale equation (14) or even simpler
directly from (32)

e(z1,t) = (71 + o) "3 LE(E), (33)
where the relation
K3/2
£n (34)
&

has been invoked.

£; is linearly growing with z; independent of m. From
experiments we usually have m = 0.43...0.75 such that
u:ug decreases algebraically with the distance from the tur-
bulence source at z; = 0. #; is a typical diffusion type of
similarity variable such as for the heat equation.

It is important to note that for the steady problem
i.e. ¢t — 0o we can show that all multi-point correlations
such as R;; become independent of Z;. Correspondingly the

similarity variables for the one-point quantities such as Wv
4 and £ in (32) and (33) become constants. This may also
directly be derived from (29) by omitting the part for the
invariant surface corresponding to ¢ and ».

A sketch of the unsteady and the steady self-similar tur-
bulent diffusion is given in figure 1.
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Xy
Figure 1: Sketch of the temporal evolution of the heat-
equation-like turbulent diffusion process with linearly in-
creasing integral length-scale according to (32).

Turbulent diffusion wave at a constant integral length-scale
(a1 =0, ag # 0)

Since from the invariant surface condition (29) we can de-
rive invariant solutions for arbitrary a;’s we may also impose
certain symmetry breaking constraints. For the present case
we impose a1 = 0, which according to z} = e®lz; in (23),
corresponds to the symmetry breaking of scaling of space
or in other words a; = 0 amounts to a constant integral
length-scale. )

Under this constraint and similar to (31) we obtain from
(29)

F1=x1 —Toln(t+to), 7=,
=z 35
R,-j(a:l,t,'r)=e‘2;%1~?4j(il,i),... . ( )
From (35) together with (34) we derive the corresponding
one-point quantities

—_— T -

Wl (21,8) = e 2E o W (B1), La(m1,t) = Ko@) -
-33
and e(z1,t) =e %o é(E1),

where the variable %, is taken from (35).

Equation (35) or rather (36) imply two important re-
sults. Due to the symmetry breaking of scaling of space,
a diffusion-wave type solution is induced with decreasing
amplitude in z3-direction and decreasing wave speed pro-
portional to 1/t as may be taken from #; in (35). Second,
the spatial decay behavior in z;-direction has changed from
an algebraic to an exponential function.

The symmetry breaking of scaling of space or in other
words the constant integral length-scale along the zi-
direction may be imposed by periodic boundary conditions
in the z2-z3-plane such that in a direct numerical simulation
the integral length-scale cannot grow.

Similar to subsection we may consider the corresponding
steady case. The similarity variables of the multi-point cor-
rfEtions e.g. in (35) become independent of ;. Similarly,

uiul, Z; and £ in (36) become constants. In particular the
integral length-scale becomes a constant in space as t — oo.

A sketch of the diffusion wave and the corresponding -

long-time behavior is depicted in figure 2.

Turbulent diffusion in a constantly rotating frame (a1 # 0,
az = 0)

In contrast to the previous case we may now consider
the symmetry breaking of scaling of time in (24) due to
a2 = 0, imposed by an external time scale given by the
frame rotation (7 = 1/|€2]). In the correlation equations
(14), (14) or (17) frame rotation is modeled by invoking a
non-zero 2 or to be more specific in the present case Q3 # 0.

KA
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Figure 2: Sketch of the temporal evolution of the turbulent
diffusion wave at constant integral length-scale according to
(36).

In this case we find from (29)

51 = (2 +zo)e 5, T —
z1 = (1 Tole o, P =
1 o x1+zo’ (37)

Rij(z1,t,7) = (21 + %0)? Rij(&1,7), .-

The one-point quantities are similar to (32) and (33) with
a2 = 0 or rather m = —1 in (30) and may be written as
wjul(z1,t) = (z1 + wo)zugu;(il),
Zg(xl,t) = (E1 -+ :Bo)it(il) (38)
and e(z1,t) = (1 + 10)25(5:1)

where #1 is defined in (37). Similar to the above, the steady
case corresponds to the fact that the similarity variables in
(37) and (38) become independent of 3.

The surprising result for this case is that even for ¢ —
oo the turbulent diffusion only influences a finite domain
due to the quadratic behavior of the large-scale turbulence
quantities.

Kﬂx

~ (%1%} (1= o)

Figure 3: Sketch of the temporal evolution of the turbulent
diffusion on a finite domain at a constant integral time-scale
due to rotation according to (38).

MODEL IMPLICATIONS AND ANALYTIC MODEL SOLU-
TIONS

Classical two-equation models and Reynolds-stress trans-
port models are investigated on its capability to capture one
or several of the above three invariant solutions. The partic-
ular model equations we will investigate here are the classical
K-¢ (Jones & Launder, 1972) and the Launder-Reece-Rodi
model (LRR) (Launder et al. , 1975). In addition, in the sec-
ond subsection it will be shown that for the steady case a full
analytic solution is given for the K-¢ model. The invariant
solutions are special cases of this full analytic solution.
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Model implications derived from invariant solutions

Umlauf (2001) may have been the first who empirically
recognized by numerically solving the steady diffusion prob-
lem employing the K- model that for certain model parame-
ters a very distinguished change in model behavior appears.
Without giving the invariant solution Umlauf derived the
condition for the model parameter where the change in be-
havior occurred. We may suspect and this is what we see
below that this change corresponds to a singular point in
the model equation separating between an algebraic and an
exponential decay with the singular point m = —1 or rather
a1 = 0. For each model this point corresponds to a certain
set of model constants.

In order to test the compatibility of the invariant solu-
tions derived in the last section with a certain turbulence
model we simply implement the solutions into the model
equations.

It is important to note that we only employ the steady
solutions into the model equation, the rational behind this
being the following. Formally, any of the invariant solutions
(32)/(33), (36) or (38) for the unsteady problem lead to a
reduction of the K-¢ or the LRR model equations. However,
these reduced set of equations may not have a useful set of
solutions for physically appropriate boundary conditions. In
particular the condition of boundedness for £; — oo has
to hold true for all time and hence also for t — oo which
corresponds to the steady solution. Hence implementing the
steady solution into the model equations imposes a minimum
requirement on the boundedness. In fact, one can show by
asymptotic arguments that the condition of boundedness for
the reduced equations of the unsteady case is the same as for
the steady case. For this reason we only consider the steady
case for the model investigation below.

If only one-dimensional diffusion is considered we find
that for the generic case of no symmetry breaking the value
of m which determines the spatial decay and the temporal
behavior in (32)/ (33), is determined by a quadratic equation

6(20K — cenge)m® + Toxm +ox =0

Tox £ og(ok + 24ce,0¢) (39)

= myg =
1.2 12(ce,0e — 20K)

)

and a quartic equation

(456cecicsce, — 144c3c2 + 144cy 62
—336cecsce, — 21622, ym?
+(168c1c§ - 168c¥c§ ~— 196¢cecsce, + 266cec1csce, ym3 (40)
+(73c1c2 — 28CcCaCey — T3e5CE + 38cecicsce, )m?

+(14e1¢? — 14ci2)ym — 32 + ez =0

derived by implementing the invariant solutions into the
classical K-¢ and the Launder-Reece-Rodi model (LRR)
(Launder et al. , 1975) respectively. From (39) and (40) and
the standard model constants we respectively obtain the so-
lutions for m: m; = —0.14, mg = 2.49 and m; = —0.76,
mz = —0.18, m3z = —0.13, m4 = 2.17.

Since any of the values for m represent a solution of the
corresponding model equations multiple algebraic solutions
are admitted. This property of Reynolds averaged mod-
els is known to be important under certain conditions. In
Durbin & Pettersson Reif (2001) it is shown that multiple
solutions and the corresponding bifurcation of homogeneous
shear flows are an important property which in fact models
important turbulence physics.

The second case where the symmetry breaking of scaling
of space is imposed, i.e. when a constant integral length-
scale is considered, the solution (36) is only admitted if the
model constants are modified. E.g. implementing (36) into
the K- model, model constants need to obey the equation

G2 _ o (41)
oK
This singular point is already visible in equation (39) since
the denominator should not become zero for the exponent of
the algebraic solution. The corresponding polynomial equa-
tions from the LRR model is given by
(8c3c? — 12e1¢2 — 8ercecsce, + 112¢s5cece, — 144c§c§2)*
(9cic? — 12c1c2 — 104c1cecscey + 112¢scece, + 144c2c2,)
=0. (42)

Again we see at least for the LRR model that due to the
two large factored terms different model parameters lead to
muitiple, here exponential, solutions.

It is important to note that for a given set of model
constants only one solution type is admissible, either the al-
gebraic solution (32)/(33) or the exponential solution (36).
Note that the classical model constants do not solve the
above equations (41) and (42). Hence, a one-dimensional
solution in form of an exponential spatial decay is not ad-
mitted.

The steady version of the solutions (32)/(33) and (36)
implemented into the model equations do not necessarily al-
low for independent boundary conditions for the Reynolds
stresses and the dissipation. The steady form of the alge-
braic decay solution (32) and (33) implemented into the K-&
model leads to the relation

< f{3) 240k (Cep0e — 20k)2

=z = PR
& Jag Cu (7UK +ox(ox + 24c5205))

where, evidently, only the positive sign has a physical mean-
ing. Hence, once K is picked & is determined. In contrast
the steady version of the exponential decay (36) invoked into
the K-e model yields

i sdox
=) = , 44
( & ) 6Cy (44)
exp

which, apparently, allows to freely chose K and ¢ due to the
unconfined length scale ¢ which is proportional to ¢;.

Note that the dimensions of K and & are different for
the two cases above. According to (32)/(33) K and £ have
fractional dimensions in (43) while from (36) we find that
in (44) K and & have the same dimensions as the original
variables K and ¢.

Interesting enough the singular point (41) is also visible
in the boundary relation (43). At this point the nominator
becomes zero. In addition also the denominator vanishes if
the minus sign is chosen.

The third case of a rotating frame, here rotating about
x1, cannot be modelled at all by one-point models. Classical
linear two-equation models are insensitive to rotation. How-
ever, even fully non-linear Reynolds-stress transport models
(non-linear in the Reynolds-stresses) are insensitive to ro-
tation about z; for the present flow, elucidating a serious
shortcoming of these models. There appears to be only one
model which may account for system rotation in the present
pure diffusion case. It is the model by Sjégren & Johansson
(2000) which is non-linear in the mean-velocity gradient.

(43)
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SUMMARY AND CONCLUSIONS

A set of three different invariant solutions for the turbu-
lent diffusion problem have been constructed based on Lie
group analysis of the multi-point correlation equations. The
solutions cover classical diffusion-like solution (heat equation
like) with algebraic spatial decay, decelerating diffusion-wave
solution with exponential spatial decay and finite domain
diffusion due to rotation. Two-equation model equations
and full Reynolds stress equations have been investigated
whether they capture any of the invariant solutions. Par-
ticularly the classical K- and the LRR model have been
investigated. All models comply with the diffusion-like so-
lution with algebraic spatial decay. The decay exponent
is determined by the model constants while multiple de-
cay exponents are observed. The exponential solution is
only admitted by the model equations if model constants
obey certain algebraic relations. For a given set of model
constants either the algebraic or the exponential solution is
admitted. None of the classical models is sensitive to ro-
tation for the present diffusion problem and hence the last
solution of diffusion on a finite domain is not admitted by
any of the turbulence models. The only exception might be
the model by Sjogren & Johansson (2000).

We should note that the discrepance between the ad-
mitted invariant solutions for the multi-point correlation
equations and the one-point model equations lies in the re-
duced dimensionality of the one-point equations. For the
set of classical model constants only the algebraic solution
is obtained. Nevertheless, we may not conclude from the
one-dimensional case that with the classical model constants
exponential solutions are not admitted for the two- or three-
dimensional case. In fact, it appears to be very likely that
these solutions exist for probably all Reynolds stress models
at dimensions higher than one.

The case of turbulent diffusion with rotation is very dif-
ficult. It may only be modelled with a new model equation
which is fully non-linear in the mean-velocity gradient. A
new model development appears to be necessary and may
be along the lines of the model by Sjogren & Johansson
(2000).

The latter two questions are the topic of present research
and will be published elsewhere.

We would wish to thank Arne V. Johansson for fruitful
discussions on the flow and his hint towards a new non-linear
SMC model (Sjogren & Johansson, 2000).

References

Abramowitz M., Stegun I. A.: Handbook of Mathematical
Functions. Dover Publications. (1968).

Bluman, G. W. & Kumei S.: Symmetries and Differen-
tial Equations. Applied mathematical sciences, vol. 81,
Springer. (1989).

Briggs D. A., Ferziger J. H., Koseff J. R., Monismith S. G.:
Entrainment in a shear-free turbulent mixing layer, J. Fluid
Mech., 310, (1996), 215-241.

Chen, C.-J. & Jaw S.-Y.: Fundamentals of Turbulence Model-
ing. Combustion: An International Series, Taylor & Francis.
(1998).

De Silva I. P. D., Fernando H. J. S.: Oscillating grids as a
source of nearly isotropic turbulence. Phys. Fluids, 6(7),
(1994), 2455-2464.

Durbin P. A., Pettersson Reif B. A.: Statistical Theory and
Modeling for Turbulent Flows. Wiley. (2001).

Fernando H. J. S., De Silva I. P. D.: Note on secondary flows
in oscillating-grid, mixing-box experiments. Phys. Fluids,
5(7), (1993), 1849-1851.

Ibragimov, N. H.: CRC Handbook of Lie Group Analysis of
Differential Equations, Vol. 1-3: CRC Press, (1995/1996).

Jones W.P., Launder B.E.: The prediction of laminarization
with a two- equation model of turbulence. Int. J. Heat Mass
Transfer, 15, (1972), 301-314.

Launder B. E., Reece G. C., Rodi W.: Progress in the Devel-
opment of a Reynolds-Stress Turbulence Closure, J. Fluid
Mech., 68, (1975), 537-566.

Lele S. K.: A Consistency Condition for Reynolds Stress Clo-
sures, Phys. Fluids, 28(1), (1985), 64-68.

Mann J., Ott S., Andersen J. S: Ezperimental Study of Rel-
ative, Turbulent Diffusion, Research Report, Riso National
Laboratory, Roskilde, Denmark (1999).

Oberlack M.: On Symmetries and Invariant Solutions of Lam-
inar and Turbulent Wall-Bounded Flows, ZAMM, 80(11-
12), (2000a), 791-800.

Oberlack M.: Symmetrie, Invarianz und Selbstdhnlichkeit
in der Turbulenz. Habilitation Thesis, RWTH Aachen.
(2000b).

Oberlack M.: A Unified Approach for Symmetries in Plane
Parallel Turbulent Shear Flows, J. Fluid Mech., 427,
(2001), 299-328.

Rotta, J. C.: Turbulente Strémungen. Teubner, Stuttgart.
(1972).

Shy S. S., Beidenthal R. E.: Turbulent stratified interfaces.
Phys. Fluids, A 3(5), (1991), 1278-1285.

Shy S. S., Tang C. Y., Fann S. Y.: A nearly isotropic turbu-
lence generated by a pair of vibrating grids, Ezperiments in
Fluids, 14, (1997), 251-262.

Srdic A., Fernando H. J. S., Montenegro L.: Generation of
nearly isotropic turbulence using two oscillating grids. Ez-
periments in Fluids, 20(5), (1996), 395-397.

Sjogren T., Johansson A.V.: Development and calibration of
algebraic nonlinear models for terms in the Reynolds stress
transport equation, Phys. Fluids, 12(6), (2000), 1554-1572.

Umlauf L.: Turbulence Parametrisation in Hydrobiological
Models for Natural Waters, Dissertation Thesis, Darmstadt
University of Technology, (2001).

—292-





