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ABSTRACT

The dynamic behaviors of four vortex rings ~ interac-
tion are analyzed from several new viewpoints. A cor-
relation function of rotation with deformation of a fluid
particle, a measure of the nonlinear interaction between ro-
tation and deformation in average of physical space, and the
Kolmogorov entropy in rotation-deformation space are in-
troduced to describe the behaviors of complex flows. The
first two undergo nearly opposite experience in the cascade
process and have steady asymptotic states. The entropy in-
creases within the cascade process, which is consistent with
the disordered nature of turbulence. To reveal the charac-
teristics of the vector, W; = w;8;;, which appears in the
vorticity transport equation and whose role is to stretch and
distort vorticity, a two-dimensional phase space is proposed,
in which the relative orientations of the vector against vor-
ticity vector are focused. It is found that the distribution of
the vector in the phase space is limited in a well-bounded
domain. The events of vorticity stretching are shown more
than those of compressing and this is attributed to the non-
negative source term in its governing equation. While for the
concentrated vorticity, the alignment of the vorticity stretch-
ing and distorting vector W with vorticity vector is obvious,
the statistic alignment between them does not observed.

INTRODUCTION

Turbulence can be regarded as flow fields with various
scales of vortices coexisting when Reynolds numbers of the
flows are high enough. Interactions of these vortices domi-
nate the dynamical behaviors of the flows such as energy cas-
cades. Although the number of vortices in a real turbulence
is very huge and their interactions are quite complicated, it
can be expected that studying interactions of two or more
vortices may lead to revealing the fundamental features of
turbulent dynamics. The interactions of vortices themselves
are also of theoretical interest in fluid mechanics. For these
reasons, the behaviors of two vortex tubes or vortex rings
have been widely studied (e.g. Moffatt, 2000, Marshall et
al., 2001, Allen and Auvity, 2002, and references therein).

Thanks to the advancement of computer power, it is now
possible to obtain a database of three-dimensional complex
flows in detail from direct numerical simulations. Compared
to the velocity field, the field of velocity gradient, consisting
of deformation tensor and rotation tensor, may disclose more
mechanisms and features of fluid flows. Mathematically,
frame-independent scalars of a tensor are preferred to depict
the properties of the tensor. The two well-known and phys-
ical meaningful invariants are the enstrophy w? = w;w; and
the deformation modulus or strain strength S2 = S:58s;.
Here, w; is the vorticity vector and Si; is the deformation
tensor. The spatial characteristics of these two invariants

have been extensively documented. However, in the past
decade, the investigation of other invariants besides the two
were done more and more. Specifically, the orientation, in
statistics, of vorticity vector in the frame of the principal
axes of the deformation tensor has attracted more atten-
tions (e.g. Andreotti, 1997 and references therein). It
has been discussed in the cases of homogeneous isotropic
turbulence (Nomura and Post, 1998, Tsinober, 1998), homo-
geneous sheared turbulence (Nomura and Diamessis, 2000),
and atmospheric surface layer (Kholmyansky et al., 2001).
It was shown that there exists the aligning tendency be-
tween the vorticity vector and the intermediate eigenvector
of the deformation tensor. The similar tendency between the
vorticity and the vector making vorticity tube stretched and
distorted, W; = w;S;;, which appears in the transport equa-
tion of vorticity, was also shown by Tsinober et al. (1992).
It should be pointed out here that there is a strong corre-
lation between the two alignments because the alignment of
vorticity vector with w means vorticity vector is one of the
eigenvectors of the deformation tensor. Moreover, Tsinober
et al. (1999) discussed the behaviors of the key nonlinearities
related to the velocity gradients in flow regions dominated
by enstrophy and strain. And very recently, Chong et al.
(2002) overviewed a method of using the invariants of the
velocity gradient tensor to study eddying motions and tur-
bulences. Their approach is of topological methodology by
extending the critical point theory.

In this paper, a DNS database of four ring-vortices with
identical intensity colliding to each other in a cubic box is
used to analyze the dynamic behaviors of the complicated
multi-vortices interaction. The simulation was carried out
by a spectral method where periodic boundary condition was
applied. The Reynolds number of the flow, based on the cir-
culation of a vortex ring, is 300. Energy cascade can be
clearly seen in spectral space before they dissipate, although
the Reynolds number of the computation is not sufficiently
high. The analyses are based on some various phase spaces
and variables, which consist of the invariants of the velocity
gradient field and, we believe, pose more important physical
meaning and are more appropriate for non-periodic bound-
ary flows. By looking into the behaviors of the flow field
in these phase spaces and variables, some new fundamental
features of cascade behaviors are revealed.

DYNAMICS OF THE INVARIANTS OF VELOCITY GRA-
DIENT TENSOR

It has been known that the number of the indepen-
dent invariants of any asymmetrical tensor is not more
than six in the sense that each extra-invariant has an al-
gebraic constraint (linear or nonlinear) equation relating
it to the six independent invariants. By decomposing the



asymmetrical velocity gradient tensor u;; into symmetric
part Si; = (uij; + i )/2 and antisymmetric part R;; =
(ui,j — wi,j)/2 = —e€ijxwi/2, besides the trivial invariant
Si; = 0 for incompressible flows, the other five concise inde-
pendent invariants may be chosen as:

J1 = 8i554 (1)
J2 = 8ijS;x Sk (2)
I = wiw 3)

I = wiSijwj (4)
Iz = wiSi; Sjkwy (5)

Therefore, all we need to know in this context are the
properties of the three physically meaningful variables them-
selves, i.e. strain, vorticity, and W vector, and the relative
orientation of the W vector with vorticity vector. Although
these five quantities are free from each other in the ten-
sor theory viewpoint, they are closely coupled by a dynamic
system which can be derived from the incompressible Navier-
Stokes equations:
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Here, D(x)/Dt stands for the material derivatives. Note
that for two-dimensional flows, J; = I; = I3 = 0, indicating
only global effects exist for all variables, and that I3 serves
as production term of I> and the latter plays the same role
on I. Because of the non-negative characteristics of I3, the
predominance can be expected of vorticity stretching over
compressing.

As shown in Eqns.(6), (7), (9), and (10), the pressure
Hessian plays an important role in the development of the
system. While the effects of the anisotropic part of the Hes-
sian are difficult to analyze due to its global feature, the
influence of the isotropic part of the Hessian:

1
==L -J
211 1 (11)

is local and is explicit in the governing equations of the sys-
tem. Eqn.(11) is a Poisson equation from which the pressure

Fig.1 Impinging of four vortex rings

can be solved and then the pressure Hessian can be de-
rived. Here, the combination of enstrophy and deformation
strength in the form of the left hand of Eqn.(11) serves as
the 'source of pressure’.

SIMULATIONAL RESULTS AND DESCUSSIONS

Fig.1 shows the iso-surface of enstrophy of the four vor-
tex tubes in the initial state of the simulation. In the time
evolution that follows, they interact each other and induce
complicated phenomena. The evolution can be divided into
three scenarios in the view of the development of the energy
spectra. In the first scenario (from timestepl to timestep5),
no obvious energy transfer can be observed as shown in
Fig.2(a). In the second (from timestep6 to timestepl5),
shown in Fig.2(b), the energy of the smaller scales increase
remarkably while that of the larger scales decrease, note that
the total energy decay almost exponentially throughout the
entire process as shown in Fig.2(d). In the final scenario, the
energy of all of scales decay quickly as shown in Fig.2(c). Be-
cause the second scenario shows clear cascade behavior, it
will be focused in this paper. The evolution of the total en-
strophy is also shown in Fig.2(d). From the beginning of the
cascade the enstrophy starts growing up. But the moment
it begins to decay is a lot ahead of the end of the energy
cascade (gray region in the diagram). Hence the growing
process of enstrophy cannot be used to identify the cascade
process. A cascade tracer that is independent from spectrum
is desirable for non-periodic boundary condition flows.

From the kinematic viewpoint, the deformation and the
rotation of fluid particles are two independent attributions
of fluid media. In other words, the fluid flow can be ei-
ther of potential flow or of purely spinning motion without
any deformation. But the cases in which they are dynam-
ically coupled are more common and more important in
the theoretical and engineering viewpoints. Fig.3 shows the
distribution of the PDFs in rotation-deformation space, re-
spectively of the initial state and of the late state of cascade.
It can be observed that the distribution evolves from an or-
ganized state to a scattered state, the pattern of the latter
is similar to the case of homogeneous sheared turbulence
(Tanaka and Kida, 1993). It should be noted here that
there exists a constraint that the source and sink of pres-
sure must balance with each other due to periodic boundary
condition. Indeed, the Kolmogorov entropy increases dur-
ing cascade process (see gray region in Fig.4). Nevertheless,
the correlation between enstrophy and deformation is not re-
duced as a result of disorder but enhanced as shown in Fig.4.
in the figure the development of the special-average correla-
tion function of I with J; is shown. The development of
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Fig.2 Development of energy spectra (a,b,c) and total energy and enstrophy (d)
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Fig.3 PDF's in the rotation-deformation space
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Fig.4 Development of variables

Fig.5 Diagram of the relative orientation of W vector with
vorticity vector

the normalized production term < I3/I}Jy > is also plot-
ted in Fig.4. Here < * > denotes the special average. It is
worthy to point out that < I3/I1J; > may also be regarded
as the nonlinear interaction between rotation and deforma-
tion. The behavior of this variable in the figure suggests
the cascade be also a relax process of nonlinear interaction
between deformation and rotation, though their correlation
increases. The cascade probably can be more appropriately
defined as excitement of the entropy, the range of which is
a little narrower than the origin but the transitional mo-
ment of end of process is in better agreement with that of
the other two variables. Because the correlation and the in-
teraction term exhibit steady asymptotic behaviors in our
case, another question of interest, which is beyond the limit
of this paper, is if there are such asymptotic values of them
that they are only dependent on Reynolds number in fully
developed turbulence.

Based on the vorticity transport equation, it can be as-
sumed that development of the vorticity be mainly affected
by the W vector. This vector plays one of two important
roles in energy cascades of the three-dimensional turbu-
lences. To reveal its characteristics and to understand its
dynamic behaviors, a two-dimensional phase space is de-
signed as shown in Fig.5. The abscissa in Fig.5 is parallel to
the direction of local vorticity vector of flow field and a point
in this space, determined completely by a set of invariants,
orientates the normalized W vector relative to the local vor-
ticity: the distance from the origin of the coordinates system
identifies the magnitude of the vector and the o suggests the

angle between the vector and the local vorticity. It should
be stressed here that the relative orientation of the W vector
with the local vorticity is important rather than the absolute
direction of the vector in the physical space. Fig.6 separately
shows the PDFs of the identical relative orientation of the
two vectors in the initial state and in the late state of cas-
cade of our case. The first of interest is that the distribution
is bounded in a zone whose boundary seems to be able to
be described as the upper half of an ellipse. But what can
be demonstrate now is just that |I2/I; \/}1—[, i.e. the half of

the longer axis of the ellipse if it is, cannot be over /2/3
for incompressible flows. The half of the shorter axis is sug-
gested to be 1/1/2 based on more analyses. We believe that
this boundary is just a consequence of the normalization and
is a merit to do analyses. Another distinct observation in
the figures is that the events with the tendency of alignment
between the W vector and the vorticity vector are very rare.
This is quite different from the cases referred in the intro-
duction section. On the other hand, the concentrated vortex
tubes are of rare events. Fig.7 exhibits the distributions of
the enstrophy averaged among those that share same point
in the space. It can be seen that intense vorticity is located
in the zone of the rare events with tendency of alignment.
They develop from symmetric pattern to positively-skewed
position which suggests that the vortex rings are elongated
during the cascade, just as expected in the last section. This
confirms that the vorticity stretching is firmly related to the
energy cascade. It can be also justified from our results
that the major contribution to the normalized nonliear in-
teraction come from neither the intense vorticity structures
nor the strong strain structures (see Fig.7 and Fig.8). Fig.8

_ shows the distributions of the averaged strain strength. The

distribution is similar to that of the averaged enstrophy in
the late stage of cascade, which is in consistent with the high
correlation shown in Fig.4.

CONCLUSIONS

The analyses of DNS results have shown that the en-
ergy cascade process can be exhibited in a system wherein
only four vortex rings are interacting with each other. This
confirms the importance of interaction between vortices in
turbulent cascade. The inspection is firstly performed for the
behaviors of the correlation of rotation with deformation of
fluid particles, the normalized nonlear interaction between
rotation and deformation in average of the physical space,
and the entropy in rotation-deformation space. The aim is
to find out an alternative method of identification of cas-
cade, which is applicable for non-periodic boundary flows.
All of them are found undergoing uneven experience in the
cascade regime. The behaviors of the entropy is proposed to
be used to identify the cascade process. However more cases
need to be analyzed for this purpose. It is also found that,
in the vortex interaction, the balance of "source of pressure”
changes from an ordered state to a disordered state in the
rotation-deformation space with increase of entropy.

To reveal the characteristics of the normalized vorticity
stretching and distorting vector, a two-dimensional phase
space is proposed, in which the relative orientations of the
vector with vorticity are focused. It can be clearly shown in
this space that the stretching is predominant rather than the
compressing in the flow, especially for concentrated vortic-
ity. The reason is attributed to the non-negative source term
in its governing equation. Nevertheless, unlike the cases of
other researchers, no tendency, in statistics, of alignment be-
tween the vector and vorticity is evolved, though it does for
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Fig.7 Distributions of the averaged enstrophy
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concentrated vorticity structures. The latter’s contributions
to the normalized interaction are found quite small.
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