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ABSTRACT

Modelling the pressure-transport term of the Reynolds
stress transport equation is presented focusing on the third
rank tensor of the rapid part of the pressure-velocity corre-
lation. The proposed model term is added to a low Reynolds
number two-component-limit full second moment closure
and its effects are discussed through applications for tur-
bulent wake and separating flows.

INTRODUCTION

In any standard or advanced RANS turbulence closure,
it has rarely been considered to be important to model
the pressure-transport separately from the other processes.
Some exceptional models attempted to include effects of the
pressure-transport near a wall since the DNSs of turbu-
lent wall shear flows (Mansour et al., 1988, Spalart, 1988,
etc. ) indicated that it was only important in the re-
gion very near a wall to partly balance with the dissipation
rate. Amongst those, Kawamura and Kawashima (1994) and
Nagano and Shimada (1995) employed a term including the
second derivative of the dissipation rate to take account of
this effect in the turbulence energy equation. The theoreti-
cal background of using such a term came from the proposal
of Yoshizawa (1987) by the two-scale direct-interaction ap-
proximation (TSDIA).

Recently, the DNS by Yao et al.(2001) pointed out that
the effects of the pressure-transport process were significant
in the recirculating flow region of a turbulent wake flow be-
hind a rectangular trailing-edge. In fact, its magnitude was
comparable to that of the shear production in the budget
equation of the turbulent kinetic energy. Those effects, thus,
cannot be captured without a proper model for the pro-
cess (Yao et al., 2000). This may be the reason why many
RANS turbulence model perform poorly in turbulent wake
flows. (It is well known that higher order RANS models
such as second moment closures predict slower recovery of
turbulence properties in the wake region.) Therefore, mod-
elling the pressure-transport effects far away from a wall
is an important issue and Yoshizawa (2002) recently dis-
cussed the effects of mean strain on the pressure-velocity
correlation using the TSDIA. This paper presents another
attempt for modelling the mean strain (rapid) part of the
pressure-transport term and discussions on its application
with a two-component-limit (TCL) second moment closure
(SMC) for turbulent wake and separating flows.

MODEL EQUATIONS
The transport equation of the Reynolds stress uug is
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Dt

=dij + Py + i — €45, 1)

where d;;, P;;,11;; and £;; are respectively the diffusion, pro-

duction, pressure correlation and the dissipation terms of the
Reynolds stress. The pressure correlation term is usually
split into the pressure-strain ¢;; and the pressure-transport
P .
dij terms:
IL; = ¢ij + d;. (2)

The first term of the r.h.s. of Eq.(2) has been the “core”
term to be modelled and the second term has been regarded
to be included in the turbulent diffusion term despite its
importance in the recirculating flow region of turbulent wake
flows (Yao et al., 2001).

The pressure-transport modelling
The exact pressure correlation term may be written as
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where u;,p, p ,and U are the instantaneous velocity, pres-
sure, density, and a Reynolds averaged quantity, respec-
tively. The Poisson equation of the instantaneous pressure
and its integration far away from a wall may be written as
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Then, the pressure-velocity correlation term may be written
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Traditionally, the effects of the slow part <p;.’1 is consid-
ered to be included in the turbulent-transport effects since
its linear expression in the third moments results in

Qa‘z;l = O.Zukukuj (7)
for satisfying realizability conditions as Lumley (1978)

noted. Thus, the slow part is not explicitly considered in
this study. The rapid part <p;’2 is presently modelled as a
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linear function of both the Reynolds stress and a length-
scale vector: £y , as
Buy s
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There must be several options for determining the length-
scale vector. For the third rank tensor 'y,lc] , the general form
satisfylng symmetry in the indexes !, j may be written as
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where a;; = U;u;/k — 2/36;; .k = Urur/2 and B ’s are the
model coefficients. In order to determine the coefficients,
the continuity condition:

YW=0 (10)
and the two-component-limit (TCL) condition (d5, = 0, if
up=0):
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are applied. After a moderate amount of algebra, the resul-
tant relation between the coefficients are

B2 = —14P1,83 =3/P1,01=P5 = 0,86 = =361 (12)

and only (i is a free coefficient. Thus, the present rapid
pressure-transport model may be written as
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As Lumley (1975) noted, there are several ways of split-
ting the pressure correlation term II;; into the pressure-
strain and pressure-transport terms. The form discussed by
Mansour et al.(1988) and used in Craft and Launder (1996)
may be written as
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where d)’;j and dfj* are the re-defined pressure-strain and
pressure-transport terms, respectively. By the model of
Eq.(13), d},, vanishes in a fully developed turbulent flow
parallel to a wall if £; vanishes when ¢ is the direction par-
allel to the wall. Consequently, the pressure-transport term
of Eq.(14) does not affect the prediction of such a flow field.
Usually, any established RANS model has been calibrated
in such flows, and thus the form of Eq.(14) may be a desir-
able option for implementation into a well calibrated model.
Therefore, in the present study, the term:
T Ay

dr’.

62T T g (15)

is simply added to a TCL low Reynolds number (LRN) full
second moment closure described in the next subsection.

With the TCL model, the length scale vector £; in Eq.(13)
is presently modelled as
k1.5
6= —df (16)
€
where ¢ is the dissipation rate of k and df‘ is Craft and
Launder’s inhomogeneity indicator defined as
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using the stress flatness parameter (Lumley, 1978) :A=1—
(9/8)(aijaj; — aijajkar:). The coefficient B1 in Eq.(13) is
currently set as a constant value: -0.05.

The TCL second moment closure

Craft and Launder (1996) proposed a TCL SMC after a
series of development for a full realizable SMC by the UMIST
group. The employed pressure-strain model is the cubic QI
model of Fu (1988). The Craft-Launder model is the first
LRN version of its series totally free from topographical pa-
rameters. Its redistributive term was modelled as

&%; = bij1 + dij2 + ¢i?1h + ¢ink, (18)

where ¢:;Llh,¢:;‘2" are the correction terms for inhomogene-
ity effects. The cubic QI pressure-strain model employs the
most general forms for ¢;51 and ¢;;2 as:
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tively replaced the traditional wall-reflection terms defining

The inhomogeneity correction terms, ¢ effec-
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Figure 1: Computational domain and grid for flow behind a
rectangular trailing-edge.
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Figure 2: Mean velocity distribution in the wake flow.

inhomogeneity indicators which were basically the gradients
of turbulent length scales. This model is realizable and val-
idated in the TCL turbulence boundaries. Even though the
model equations are very complicated, it is thought to be
rather economical because the realisability contributes to
rapid convergence of the solution.

Later, Batten et al.(1999) of the UMIST group modified
the Craft-Launder model and extended its applicability to
compressible flows. The present study thus follows this mod-
ified version. Note that although the original Craft-Launder
model employs an ASM procedure for the triple moments,
Batten et al.returned to the usual GGDH model of Daly and
Harlow (1970) for the turbulent diffusion process:

k

dij = E {(V6kl + 0.22ukul Z) ;;1:'1 } (21)

where v is the kinetic viscosity.
"The other detailed equations and coefficients of the TCL
model are described in Appendix.

RESULTS AND DISCUSSIONS

Rectangular-edge wake flow

Fig.1 illustrates the geometry of the presently consid-
ered wake flow behind a rectangular trailing-edge of Yao et
al.(2001). A developed boundary layer flow comes in from
the inlet boundary at the Reynolds number of 1000, based on
the free-stream inlet velocity U, and the trailing edge height
H. The present 2D computational grid consists of 5 blocks
and 30650 rectangular cells in total. A grid-refinement test
with a finer grid having twice node points in each direction
has indicated that numerical errors are unimportant with
the present grid (see Fig.3). Numerical computations have
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Figure 3: Streamwise velocity along the centerline.
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Figure 4: Turbulence energy distribution in the wake flow;
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been performed by a general unstructured grid code of Suga
et al.(2001) using the third order scheme for the convection
terms.

Fig.2 compares the mean velocity distribution with that
of the DNS of Yao et al.(2001). Although both of the TCL
models with and without df] 72 term perform equally well,
discrepancies can be seen on the centerline y/H = 0. (The
TCL model means the TCL model without df;z hereafter.)
To confirm this, Fig.3 compares the predicted streamwise
mean velocity along the centerline behind the trailing-edge.
It is obvious that including the df;z term reasonably im-
proves recovery in the wake region though it leads to a little
shorter recirculation.

Fig.4 compares the turbulence energy distribution. Al-
though the agreement is not perfect, the df;z term generally
improves the predictive performance of the TCL model. In
the distribution of the Reynolds stresses (Fig.5(a)-(d)), there
can be also found clear discrepancies between the models. In
the recirculation region at z/H = 1, the TCL model overpre-
dicts the shear stress —uw (Fig.5(a)) resulting in a little high
level of streamwise normal stress u2 (Fig.5(b)). Although in-
cluding the df J’; term tends to enhance the overprediction of

the shear stress there, it does not affect the u2 and does im-
prove the v? distribution near the centerline (Fig.5.(c)). In
the sections downstream of the recirculation (z/H > 3 ), all
the profiles of the development of the Reynolds stresses are
obviously improved by the dffz term though 2 is still rather
smaller near the centerline. This encourages the present
modelling strategy though further considerations may be
needed for the recirculating region.
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Figure 5: Reynolds stress distribution in the wake flow.

Fig.6 shows the budget distribution of the turbulence
energy equation by the TCL model with df;z in the recir-
culating region at z/H = 1. Clearly no predicted process
accords well with the DNS data. (The dissipation & and
the turbulent diffusion d?c need to be improved. Due to the
overprediction of —u¥, the production Py is overpredicted
though Py itself does not need any modelling.) As shown in
Fig.7, according to the decrease of the mean strain towards
the centerline (y/H = 0), the predicted distribution of df
decreases rapidly from y/H = 0.6. However, the DNS indi-
cates that although its second peak is around y/H = 0.6, its
peak appears around y/H = 0.4. Since the turbuient diffu-
sion process, which is a triple moment, is not significant in
the region shown in Fig.7, the DNS suggests that the slow
pressure-transport should not significant there also. Thus,
owing to the profiles of the mean strain shown in Fig.7, some
functional magnitude needs to be multiplied to the rapid
pressure-transport model for reproducing the peak profile.
Or, a higher order form of the third rank tensor model may
need to be considered.
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Figure 6: Budget of the k equation in the recirculating region
of the wake flow; symbols: DNS, lines:TCL+d?,
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Figure 7: Mean velocity gradient in the recirculating region
of the wake flow.

Back-step flow

Another evaluation of the effects of the df ’4'“2 term has
been performed in the back-step flow of Kasagi and Mat-
sunaga (1995). Its Reynolds number is 5500 based on the
step height H and the centerline velocity Uc. The compu-
tational grid used has a structure similar to that for the
trailing-edge wake flow and consists of 19000 rectangular
cells in the domain of —5H < = < 30H. The grid resolution
is comparable to that of wake flow and has been confirmed
to be enough since a finer grid with twice node points in
each direction has produced less than 2% longer reattach-
ment length than that by the present grid. (The predicted
reattachment length is 6.3 for both the cases with and with-
out the df;z term though the experimentally measured one
is 6.5.)

Fig.8(a) shows the distribution of the mean velocity. It is
obvious that the df ;2 term does not affect the mean velocity
distribution and both the model predictions are well agree
with the experiments. In the distribution of the Reynolds
shear and normal stresses (Fig.8(b)(c)), although there can
bee seen slight discrepancies between the predictions, both
the model predictions agree well with the experiments. This
implies that almost no significant effect of the df ;2 term can
be found in this flow field.

Fig.9 shows the distribution of the processes of the tur-
bulence energy equation by the TCL model with the df;._, in
the recirculating region at /H = 2. The relative magni-
tude of the pressure-transport dz is smaller than that in the

wake flow (Fig.6). This is the reason of its ineffectiveness on
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Figure 8: Mean velocity and Reynolds stress distribution in
the back-step flow.
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Figure 9: Processes of the k equation in the recirculating
region of the back-step flow; lines:TCL—Fdf ;2.
the predictions shown in Fig.8. Le et al.(1997) also showed
very small relative magnitude of dz in the recirculating re-
gion of their low-Reynolds number back-step flow by DNS.
y/H =04

CONCLUDING REMARKS

In the present study, the rapid part of the pressure-
transport process of the Reynolds stress equation is modelled
using the two-component-limit condition. The effects of the
proposed term in the two-component-limit second moment
closure are discussed through the application to a turbulent
wake flow behind a rectangular trailing-edge and a turbulent

back step flow. The following remarks are concluded:

1. The rapid pressure-transport model is effective to im-
prove generally the prediction of the turbulent wake flow.
However, further consideration for its functional coefficient
or higher order form is needed to obtain more reasonable
results.

2. The effects of the rapid pressure-transport model
tends to be marginal in the low-Reynolds number back step
flow. This complies with the DNS of the similar back step
flow and implies that the general tendency of the process is
reasonably captured by the present model.

APPENDIX:
ADDITIONAL MODEL EQUATIONS OF THE TCL SMC
The model equations which are not described in the main
part are summarised below.
To compensate the near wall variation of the pressure
transport, the additional term:
1 8

—_—— [—pcpd(O.5d;c + 1.1df)(uekAA2)l/2]

22
Py (22)

is added to Eq.(14), where d; is another inhomogeneity in-
dicator:
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and the coefficient is
cpd = 1.5(1 — A%)[{1 + 2exp(—R:/40)} A,
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The inhomogeneity correction terms:
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are used.
The dissipation tensor is modelled as
2
e = (L= fCl +el)/D+ 2di e, (26)
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where D = (e}, +¢€}/;)/(2¢) and
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= VA(A > 0.05). (29)

The transport equation for the isotropic dissipation rate
& (=& — 2v(0vk/Oz1)(8Vk/Bzy)) is modelled as
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Table 1: Model coefficients and functions in the TCL second moment closure.

c1 =3.2favVA2fRe
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¢z = min{0.55{1 — exp(—_ﬁgb/:i)},
fwz = 0.642(1 — VA)fg, +0.1
fa=+/A/14, A<0.05 F, =min{1,ma.x (0,1— By 58
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where c.1 = 1.44, ce2 = 1.92, and

P.3 = 04uu-u-k 82Uy 82Uy
€3 = DAV Ox;0x; Ox;0x; ’

(31)
The length-scale correction term of lacovides and Raisee
(1999):
=2
Yg = o.safk— max{F(F +1)2,0} (32)

is employed with
Fo— —1_ a(kl.s/a) B(kl'S/E) /2
6:Ej 8:1:_1'

€
— {1 —exp(—BcR:) + Bc Ry exp(—BeR:)}, (33)

¢; = 2.55 and B, = 0.1069.
All the other model coefficients and functions are listed
in Table 1.
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