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There have been increased activities in developing efficient and robust controllers for viscous
drag reduction in turbulent boundary layers. Many of these new approaches are quite different
from the existing ones in that either they are directly utilizing modern control theory or they are
derived from purely mathematical properties of the equations that govern the flow under investi-
gation. Although turbulent flows are in general governed by nonlinear dynamics, some of these
new approaches specifically target a linear mechanism that has been identified to be responsible
for high-skin friction in turbulent boundary layers. The fact that a linear mechanism plays an im-
portant role in this nonlinear turbulent flow allows us to investigate the flow from a linear system
theory point of view. Recently several investigators have reported successful applications of linear
controllers derived from linear control theory, but many fundamental and challenging questions
have been raised in the course of applying linear optimal control to turbulent boundary layers. In
this study we have performed a singular value analysis of some existing controllers in order to gain
new insights into the mechanism by which these controllers were able to accomplish viscous drag
reduction in turbulent boundary layers.

The traditional eigenvalue analysis, which predicts whether a linear system is stable or unstable
based on the eigenvalues of the system, is inadequate in explaining transient—nonetheless quite
substantial—growth of the kinetic energy of certain disturbances in otherwise a stable system. This
transient growth is due to non-normality of the linearized Navier-Stokes system. Eigenfunctions of
a non-normal system are not orthogonal to each other, and as such the kinetic energy of certain
disturbances can grow before its ultimate decay cven in a linear system with no unstable eigen-
functions. Since the transient growth is due to a linear mechanism, its behavior can be analyzed
through a singular value decomposition (SVD) of the system operator [1], with which the amplifica-
tion factor of the so-called optimal disturbance could be determined. We hypothesize that the SVD
analysis is also appropriate for examining performance of controllers for turbulent boundary layers.
Effective controllers must reduce the non-normality of the flow system, since it is also believed to
be responsible for sustaining near-wall turbulence structures, which in turn are responsible for high
skin-friction drag in turbulent boundary layers.

We have performed the SVD analysis of various linear-quadratic-regulator (LQR) controllers we
have developed as well as the so-called opposition control used by Choi et al [2], in the hope that it
could shed new light into these control methods. Note that these methods have been designed to
achieve a similar goal, 7.e., interfering the interactions between the near-wall streamwise vortices and
the wall in order to reduce skin-friction drag in turbulent boundary layers. Despite the limitation
that it cannot be easily implemented in practice, opposition control has been used as a reference case
to which many other controllers have been compared. Although there have been some explanations
now this simple control works, it is not completely understood, including what determines the
optimal detection-plane location (currently observed to be around y* = 15 from the wall). With
the SVD analysis, we have also examined whether it could provide a guideline of choosing optimal
parameters in designing these controllers.

The first step to apply the SVD analysis is to formulate the governing equations in terms of
the state-space representation as is done for other linear optimal controller design. The linearized
Navier-Stokes equations with control input can be written in the following state-space representa-
tion:

dx

painia 1
7 Ax + Bu (1)
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u = —Kx, (2)

where x and u represent the state-space and control input vectors, respectively, and A, B and K
represent the system, actuation and control-gain matrices, respectively. The control-gain matrix
K for an LQR controller is determined by solving an algebraic Riccati equation, while that for the
opposition control is easy to construct (especially when x represents a collocation vector) once the
detection-plane location is known.

Figure 1 shows distributions of singular values for the disturbance energy growth with an ap-
propriate time scale. The flow system chosen here is a turbulent channel flow at Re,=100, where
Re, is the Reynolds number based on the wall-shear velocity and the channel half-width, with
various controllers. These singular values represent the amplification factor for each singular vec-
tor with which any disturbances can be expressed. As such, our concern here is whether there
exist singular values much larger than one. It can be seen that the singular values corresponding
to the opposition control (with the detection-plane location at y* = 15) and an LQR-controller
(minimizing the disturbance energy growth) are much smaller than those corresponding to the
uncontrolled system. The singular values corresponding to the opposition-controlled system with
different detection-plane locations were higher than those shown here, corroborating with the nu-
merical observation that y* = 15 is the optimal location. Also, shown are the singular values for
a virtual flow [3], in which the linear coupling term between the Orr-Sommerfeld and the Squire
equations was removed. Note that all singular values for this case are less than one, indicating
that no transient growth in the virtual flow. From these distributions of singular values, one would
expect that the virtual flow would be most effective in reducing the skin-friction drag in turbulent
boundary layers.

In order to examine the applicability of the above SVD analysis, which is based on the linearized
Navier-Stokes system, to fully nonlinear turbulent flows, we applied these controllers to direct
numerical simulations of a turbulent channel flow at the same Reynolds number. Figure 2 shows
the time evolution of mean skin-friction drag in the channel with various controllers. Note that the
case without the linear coupling term (virtual flow)results in complete laminarization, consistent
with the SVD analysis. Other results are also consistent with the SVD analysis, demonstrating
that the SVD analysis is a viable tool in predicting the performance of a controller in the nonlinear
turbulent channel flow. '

We have shown that the SVD analysis could be used to gain useful information on the perfor-
mance of certain controllers. It could be used in optimizing control parameters without actually
performing expensive nonlinear computations. Other issues, such as the effect of using the evolving
mean flow as control applied to a nonlinear flow system (also known as gain scheduling) and high
Reynolds number limitation, will be investigated through the SVD analysis.
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Figure 1: Singular values in a turbulent channel with different controllers: o , no control; e,
opposition control; x, LQR control; A\, virtual flow. This is for the case of k, = 0, k, = 6.0
(corresponding to A} a2 100), and Re,=100.
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Figure 2: Mean skin-friction drag history with various control methods: , o control; ---- ,

opposition control, ----- , LQR control; -------- , virtual flow.
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