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ABSTRACT

We propose a new algebraic control scheme for drag reduction
in wall-turbulence, which requires the streamwise wall-shear signal
only. By assuming continuously distributed sensors and actuators, the
controller is designed to reduce the near-wall Reynolds shear stress
that is directly responsible for the turbulent skin friction drag. In-
tuitive and suboptimal control schemes are considered. The derived
control laws are assessed by means of direct numerical simulation
of turbulent pipe flow at Re; ~ 180. A clear drag reduction symp-
tom associated with a negative near-wall Reynolds stress is observed
when the control scheme derived by the suboptimal control theory is
applied. )

INTRODUCTION

For successful development of an active feedback control system
for drag reduction in wall-bounded turbulent flow, the effectiveness of
the control algorithm used as well as the performance of the hardware
components such as sensors and actuators is of great importance.

Control schemes may be classified into two types, i.e., explicit
and implicit schemes. The explicit scheme is one in which the con-
trol input of the actuator i, ¢, is given explicitly, e.g., 0i(F1) =
Fls;j(%,¢'| ' <1)], where s; is the sensor information and F is a map-
ping function. On the other hand, the implicit scheme, such as the
optimal control (e.g., Bewley et al., 2001) only describes a relation to
be satisfied (i.e. the control input minimizing the cost functional) and
requires iterative procedures to determine the control input. While
such implicit schemes are useful to explore the possibility of drag re-
duction control, the explicit schemes are easier to be implemented in
the real applications.

In the last decade, various explicit control algorithms were de-
veloped and assessed by using direct numerical simulation (DNS) of
controlled turbulent flow. Choi et al. (1994) proposed so-called the
opposition control, in which blowing/suction velocity is given at the
wall so as to oppose the velocity components at a virtual detection
plane located abovethe wall. They attained about 25 % drag reduction
in their DN'S of turbulent channel flow at low Reynolds numbers. Sub-
sequently, several attempts were made to develop control algorithms
using the information measurable at the wall. Lee et al. (1997) used a
neural network and obtained an algorithm in which the control input is
given as a weighted sum of the spanwise wall-shear stresses, ow/0y|w,
measured around the actuator. Lee et al. (1998) derived series of an-
alytical solutions of the control input to minimize the cost function
in the framework of the suboptimal control. Their DNS of channel
flow at Rec =~ 110 showed 16-22% drag reduction when ow/dy)y (in
this case, the control law is quite similar to that obtained by using the
neural network mentioned above) or the wall pressure, py, was used
as the sensor signal.

From a practical point of view, it is desirable to use the streamwise

wall-shear stress, Tw = du/dy|w, or py (or both) as a sensor signal be-
cause a streamwise wall-shear stress sensor (Yoshino et al., 2003) and
a wall pressure sensor (Lofdahl et al., 1996) of sufficiently small size
and high frequency response are becoming available. For the use of
Pw, in addition to the work by Lee et al. (1998), Koumoutsakos(1999)
presented an algorithm to suppress the vorticity flux, and succeeded
to reduce the friction drag in his DNS.

For the use of 1., however, development of effective algorithm
seems more difficult. Lee et al. (1998) also presented a suboptimal
solution aiming at reduction of T,,. This algorithm uses T, as the sen-
sor signal only, but the friction drag (i.e., T;;) was not reduced by that
algorithm. Very recently, Lee et al. (2001) applied a two-dimensional
linear-quadratic-Gaussian (LQG) controller to a linearized Navier-
Stokes equation. About 10 % drag reduction was attained in their
DNS of a channel flow at Reg ~ 100. They also attained 17 % drag
reduction by making an ad hoc extension. Morimoto et al. (2002)
employed a weighted sum of 7, as the control input and optimized
the weights by using the genetic algorithm (GA). The excellent gene
(i.e., the pattern of weights) led to 12 % drag reduction in a channel
flow at Re; ~ 100.

The previous suboptimal control using the streamwise wall-shear
signal only targeted at direct suppression of the streamwise wall-
shear. Namely, the cost functional may be expressed as

J(¢)=ﬁ/S[w&dthM—j——lN/s[w(%

where ¢ is control input, which is the blowing/suction velocity and
the wall, £ represents the price of the control and m is usually chosen
as 1 or 2. However, in the framework of suboptimal control, it is
not necessary to reduce the streamwise wall-shear at every instance.
All we should consider is to modify the flow structure so that the
modification leads to a drag reduction in the long run. Therefore, in
the present study, we develop control laws in an alternative approach.

m
> dtds,
w

THEORETICAL BACKGROUND

Under the condition of constant flow rate, the skin friction drag,
Cr =7,/[(1/2)p*U;?, in fully developed channel and pipe flows can
be decomposed as

12 1 —_
=—=—+12 | 2(1 —=y)(—uV)d 2
=gt A (1 =y (=uv) dy @
and
C —-&+16/12ru’u’rdr ?3)
f“Reb o riz ’

respectively (Fukagata et al., 2002). Here, all variables without super-
script are those nondimensionalized by the channel half width, §*, or
the pipe radius, R*, and twice the bulk mean velocity, 2U;, whereas
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Figure 1: Weighted Reynolds stress distribution of the opposition-
controlled flow with different detection plane heights y,.

dimensional variables are denoted by the superscript of . The bulk
Reynolds number is defined as

o 22U, R
V*

Rep = , or Rep= s 4)
Equations (2) and (3) indicate that the skin friction coefficient is de-
composed into two parts. One is the laminar contribution given by
the well-known laminar solution, and the other is the turbulent con-
tribution, which is proportional to the weighted integral of Reynolds
shear stress. Figure 1 shows the weighted Reynolds stress appearing
in Eq. (3) (i.e., 2r%u/ul), in a pipe flow controlled by the opposition
control algorithm with different detection plane heights, y:;“. The dif-
ference in the areas covered by the controlled and uncontrolled flow
curves is directly proportional to the drag reduction by control. The
maximum drag reduction rate is obtained with y;“ = 15. Itis clear
that most of the drag reduction is attributed to the suppression of near-
wall Reynolds stress. As reported in the opposition control of channel
flows (Choi et al, 1994; Hammond et al., 1998), the drag reduction
rate decreases when too high detection plane is used. This is due to
the drastic increase of the Reynolds stress very near the wall, as illus-
trated for the case of y* =23 in Fig. 1.

Another observation in Fig. 1 is that the Reynolds stress far from
the wall is also suppressed, although what is directly suppressed due
to the formation of a virtual wall (Hammond et al., 1998) should be
the near-wall Reynolds stress only. This can be explainedby a gradual
outward propagation of the change of Reynolds stress, which happens
in the near wall layer. This is similar to the observation in the pipe
flow with the opposition control applied partially to wall (Fukagata &
Kasagi, 2003). In that simulation, the profile near the wall drastically
changes due to the direct suppression at the beginning of controlled
region; then, the distribution far from the wall changes gradually fol-
lowing the quick change in the near-wall region. Although the control
input in that example is switched on in space, a similar phenomenon
is expected when it is turn on at a certain time to a fully developed
uncontrolled flow.

CONTROL SCHEME

Intuitive control

The above discussion suggests that suppression of the near-wall
Reynolds shear stress is of primary importance in order to reduce
the skin friction drag. Once the near-wall Reynolds shear stress is
suppressed, its propagation toward the outer layer is also expected to
result in an additional drag reduction.

As is well known, the positive Reynolds shear stress (i.e.,
—#'V > 0) near the wall is a consequence of the dominance of the
sweep/ejection motions, as shown in the left of Fig. 2. Therefore, an
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Figure 2: Schematic of the intuitive control scheme.

intuitive control strategy in order to attenuate the Reynolds stress in

the vicinity of the wall is to apply blowing to the high-speed region

and suction to the low-speed region (see, Fig. 2, right). This can be

expressed as

dul’ ;|

—| , or é=0a == , 5)
i, ar |,

for a channel or a pipe, respectively. Here, o is the amplitude coef-

ficient and the prime denotes the fluctuation component. Note that

the control input is defined as ¢(x,z,#) = v(x,0,z,¢) for a channel and

¢(8,z,1) = ur(1,8,2,t) for a pipe.

b=0o

Suboptimal control

Cost functional. A control law can also be derived by using the
suboptimal control theory. First, we propose a cost functional J to be
minimized as

Y] 1A 1 A
%(0)= z’AE/s/, @ d:ds+m/s/‘ (=u/)y_y dtdS
®)

for a channel flow and

@)= [ [ oaras+ /M(") deds
p¢)_E/s<[ ¢ dt +AAt,/s | r=(r-n)

)]
for a pipe flow, respectively. Here, ¢ denotes the control input, i.e.,
the blowing/suction velocity at the wall, A is the area of wall, At is the
time-span for optimization, and £ is the price for the control.

The proposition is to minimize this cost functional under the
linearized Navier-Stokes equation. Since a very short time, As, is
considered here, the linearization is done by neglecting the advection
term in the Navier-Stokes equation, similarly to Lee et al. (1998).

Controf law for channel flow. At first, a channel flow is consid-
ered for simplicity. The Reynolds shear stress above the wall (y = Y)
is approximated by using the Taylor expansion, i.e.,

o’

d(yy=Y % w+ o?)

1 o’ 2
= —uV(Y)=~-Y¢ ) +0(Y?).
V(¥) =+ 0(r?) Y
®
Note that the leading term for v/(¥ ) in the absence of the control input
is on the second order. With control, however, the zeroth-order term
appears. Substitution of Eq. (8) into Eq. (6) yields an approximated

cost functional, i.e.,

ﬂ@=j%£[w&wa—§ﬁé[m¢%

The control input, ¢, that minimize the cost functional, Eq. (9),
can be calculated analytically through the procedure proposed by Lee
et al. (1998) as follows.

deds.
w
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First, the Fréchet differential is applied to the cost functional, i.e.,

DY _ ¢ 1AL
250 = Am/s[ 0bdr dS

—%A/IHN(S—;

d+9 g—;’l ) drds.

(10
Here, the Fréchet differential is defined by
D)z _ . f(o+e) —f(9)
Do ¢=lim === 1y
and ¢ is the differential state of the streamwise velocity, i.e.,
Du .
q= Dot (12)

Next, a two-dimensional (the streamwise and spanwise) Fourier
transform is applied to the approximated cost functional, Eq. (9), to

read o N e
Dt _oo5 Y (%] 5,5 %
Do ? =099 -3 (ayw 5 w>. 13)

where the hat denotes the Fourier component and the subscript of *
denotes the complex conjugate.

The modification of the streamwise velocity due to the perturba-
tion field, ¢, that appears in Eq. (13) can be determined by solving the
Fréchet differential of the state equation (i.e., the linearized Navier-
Stokes equation). Since here we consider the same state equation and
boundary condition (v,, = ¢) as those used by Lee et al. (1998), we
simply borrow their solution of g that reads

)

0) = S (exl-(ORe/) 3] —expl-by)) . (19

Here, k; is the streamwise wave number and  is the two-dimensional
absolute wavenumber, i.e., k = ,/kx7+kz7. From this solution, the
complex conjugate of the wall-shear modification due to the pertur-
bation field can be calculated as

3 [2Re iky 7
| Va7 (15

where the same assumption as that used by Lee et al. (1998), ie.,
k> < 2Re/Ar is used.

Finally, by substituting, Eq. (15) into Eq. (13), we can find the
suboptimal control input that makes (DJ./D¢)d = O for any §, as

~ cC
= 1
= ARk 3 . {16
There are two parameters in this algorithm:
Ar
C= e an
is the amplitude coefficient and
Y
A= 3P (18)

can be interpreted as a length scale as explained below.

Control iaw for pipe flow. The algorithm for a pipe flow can be
developed similarly by using the Taylor expansion of the near-wall
Reynolds stress, i.e.,

’o ou} 2
u,uz(l—Y)z—Y¢¥ +O(Y). (19)
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Figure 3: Correlation between k; /k for channel and k(m, ;) for pipe.
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and the solution of g for pipe flow (Xu et al., 2002), i.e.,
’*_i/\@ [Im(r/C) _Im(kz’)J , 0)

T= P  In(1/C) ™ Tnlly)
where
— 2 | In(1/C) In(1/C) 12
Ph=x [ImH(I/C)*Im-l(l/cJ"’/ For @D
and
g [me1tks) W(1/C) | Inilh) IWn(1/C)
kp_kz{ Irn(kz) lm+1(1/c) IM(kz) I,,,_1(1/C) 2kZCJ(.22)

Here, m is the azimuthal mode number and k = /&2 + m?, and
In(r) denotes the m-th order modified Bessel function, i.e., I, (=
(=i)™Jm{ir). The length is nondimensionalized by R*, and hence
kg = (2mm)/(2rR*) = m. The expression above is simplified as
compared to the original one by Xu et al. (2002) by this nondimen-
sionalization and by using the similar assumption as that made for
channel, i.e., k2,m? < 2Re/Ar.

Following the similar procedure as that for the channel flow, we
obtain the control input

c e

o= /A~ ix(m k) or | @3

The difference from the solution for channel flow is absorbed into the
factor, (m, k;). As can be imagined from Eqs. (20)-(22), the exact
expression of k(m, k;) is highly complicated. However, under the
condition of |m| < 1/C, the asymptotic expression for the modified
Bessel function, i.e.,

1
m (1 s 1/C), 24
In(1/C) ,——M/Cexp(/ ) 249
simplifies the expression of x(m, k;), as
_l/c In (k)
k) = [(5+1) 263 -], @)

where 1, () is the radial derivative of I, (). The amplitude parameter,
C, is usually much smaller than unity. In that case, Eq. (25), can be
further simplified to read

X(m, k) = == (26)
The correlation between the wavenumber-dependent parts, i.e., ks /k
for channel and x(m, k) for pipe, is shown in Fig. 3. The correla-

tion is nearly linear for higher wave numbers. Naturally, the largest
deviation is observed at the lowest azimuthal wavenumber (m = 1).
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Figure 4: The normalized weights in the physical space: (a) A=T;
(b) A =73; (c) A = 728. The number of modes is 256 and 128 in the
streamwise and spanwise directions, respectively.

Welghts in the physicai space. The derived control algorithms
can be transformed to the physical space through the following inverse
Fourier transform:

= ¢(x,z)=/_i/_:ww,z')g—;-

(x+x,x+2)dx'dd

w

@n
where W* is the function preceding 1, in Egs. (16) and (23). This
indicates that the control input of an actuator is given by a weighted
integration of T, around it. Figure 4 shows the weight, W, in the case
where 256 and 128 modes are used in the streamwise and spanwise
directions, respectively. The distribution has different characteristics
in the streamwise and the spanwise directions. The length scale of the
exponential decrease downstream of the actuator is seemingly deter-
mined by A.
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Figure 5: The normalized weights in the physical space (A= 73) with
different mode numbers. (a) streamwise distribution; (b) spanwise
distribution.

In order to investigate on the behavior of the weight in detail, the
streamwise distribution in the plane of z = 0 and the spanwise dis-
tribution in the plane of x = 0 are examined by varying the mode
numbers used, as depicted in Fig. 5. In both figures, the weights
are normalized by W (0,0). Although the distribution in the physical
space is dependent on the number of modes used, it is nearly indepen-
dent of the sensor index. Therefore, the control law is more properly
expressed in the discretized space as

dee =2, 2 Wi -aaﬁ . (28)
] Y lw, ki 4j
The values of weights around the actuator for a typical case rA=173)
is tabulated in Table 1.
Although the analysis above is made for the case of channel flow,
the distribution of the weight for the pipe flow is found to be essen-
tially the same.

PERFORMANCE TEST

Performance of the proposed control algorithm is assessed by
DNS of turbulent pipe flow. The DNS code is based on the energy
conservative finite difference method for the cylindrical coordinate

Table 1: Normalized weights, W; ;/Wo o around an actuator (A=173).

i=-2 -1 0 1 2 3 4
j=0 0.1 -02 1.0 20 1.4 14 1.1
*1 00 0t 04 -07 -05 04 -03
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Figure 7: Reynolds stress (A = 73, ¢;% = 0.08).

system (Fukagata & Kasagi, 2002). The time integration is done
by using the low storage third-order Runge-Kutta/Crank-Nicolson
scheme (Spalart et al., 1991) The bulk mean velocity U, is kept con-
stant, and the Reynolds number is Re,, = 5300 (Re; = uiR* /v* ~ 180
for uncontrolled flow). The computational domain has a longitudinal
length of L = 20R and the periodic boundary conditions are applied
at both ends. The root mean square of the control input, §rms, is kept
constant.

First, the control law derived by using the suboptimal formulation
is examined. Figure 6 shows the computed drag reduction rate for
different values of A and ¢%. Here, the superscript of +u denotes
the wall unit of uncontrolled flow. For any values of A tested here,
large drag reduction rate is obtained when ¢;% is of order of 0.1.
This amplitude is nearly the same as that of the opposition control
with the detection plane height of y}* ~ 10. The optimum value of A
seems to be between 10-100.

Figure 7 shows the Reynolds shear stress near the wall. As can
be seen, with the present control the near-wall Reynolds stress is sup-
pressed as intended. More interestingly, it takes negative values in
the region of 0 < y™ < 5. As shown in Fig. 8, the joint probability
density distribution of the streamwise and wall-normal velocity fluc-
tuations in the near-wall layer (0 < y™* < 5) exhibits a similar change
to what we initially expected (Fig. 2). The sweeping motion is es-
pecially suppressed, whereas the low-speed inward and high-speed
outward motions are enhanced by the present control.

These results suggest a possibility of drastic drag reduction even
if the near-wall turbulent structure can be manipulated directly — by
making a largely negative Reynolds stress in the near-wall layer, or
by directly suppressing the Reynolds stress farther from the wall as is
the case of the opposition control compared in Fig. 7.
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Figure 8: Joint probability density distribution of the streamwise and
wall-normal velocity fluctuations in the near-wall layer (0 < y*™* < 5).
(a) No control; (b) Present algorithm. The increment of contours is
constant in the logarithmic scale.

For the intuitive control scheme, Eq. (5), the computation is very
unstable and drag reduction is not observed with any value of the
parameter examined. Such unstable behavior is illustrated in Figure
9. Here, time traces of the control input ¢ of one actuator are plotted
for four different control schemes:

1. Reynolds stress-based intuitive control, i.e., Eq. (5);
2. Reynolds stress-based suboptimal control, i.e., Eq. (16);

3. streamwise wall shear-based intuitive control (Lee et al., 1998),

ie.,
~ Ky Ou
d=—i— —| 29
k dy "
4. spanwise wall shear-based intuitive control (Lee et al., 1998),
ie.,
p=ife (30)
k dy "

In all cases, the magnitude of control input is fixed at ¢} = 0.08. It
is clear that two schemes that successfully reduce the drag (i.e., the
present {(—uv)-based suboptimal control law and the (dw/dy)-based
suboptimal control law by Lee et al.) give almost constant control
input in this short period of time (1 wall unit time), whereas those do
not reduce the drag give oscillatory control input. Note that the CFL
number in the computation is on order of 0.1 so that this instability is
not a purely numerical one. The instability is rather originated from
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Figure 9: Time trace of control input of an actuator with different
control schemes.

the coupling between the dynamics of the plant (i.e., fluid flow) and
the controller.

DISCUSSION

It is interesting to investigate why the wall shear-based analytical
suboptimal solution, Eq. (29), does not reduce the drag (Lee et al.,
1998), while the Reynolds-stress based one in the present study can.
Lee et al. (1998) argues that Eq. (29) does not work because the
advection term is not at all accounted for. This, however, may not be
solely responsible for the failure, because the time domain considered
in the suboptimal control is very short so that the advection term can
be neglected.

According to the present results, another reason can be pointed
out. The cost function by Lee. et al. (1998) directly includes the
friction drag, i.e., (0u/dy)w. This is equivalent, in the framework
of the present study, to reduce the second term in Eq. (2), which
also includes the contribution of the Reynolds stress far from the
wall. However, the modification of flow that can be predictable by the
linearized Navier-Stokes equation and the flow that is directly control-
lable from the wall in a short period are limited near the wall. Namely,
the cost functional based on (du/dy). is contaminated by the unpre-
dictable/uncontrollable information originating far from the wall. The
present approach, on the other hand, limits its target to the near-wall
Reynolds stress only and the reduction of far-wall Reynolds stress is
simply left to the natural secondary effect (Fukagata & Kasagi, 2003).
Namely, the cost functional and the derived control law concerns with
the predictable/controllable information only. Of course, this argu-
ment is valid only for the suboptimal formulation with a linearized
Navier-Stokes equation, but not for the optimal formulation that deals
with a large spatio-temporal domain.

CONCLUSIONS

Based on the knowledge on the componential contribution to the
skin friction (Fukagata et al, 2002), an alternative cost functional for
drag reduction, which incorporate the near-wall Reynolds shear stress,
was proposedin the framework of the suboptimal control. The control
input to minimize that cost functional was analytically obtained by
using the method proposed by Lee et al. (1998).

DNS of pipe flow at Rey ~ 180 with the proposed control al-
gorithm showed a clear drag reduction effect. Although the drag
reduction rate attained by the present algorithm was small, the result
suggests a clue on further drag reduction through manipulation at the
wall only.
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