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ABSTRACT

Direct numerical simulations of homogeneous turbulence
being sheared in a frame rotating about the spanwise are
performed for a range of values of the governing parame-
ters. The aim is to clarify the physics of rotated shear flows
and to provide a complete database for use by turbulence
modelers. One of the main findings of this work is that
the equilibrium value of the ratio of the production rate to
the dissipation rate (P/e) of the turbulent kinetic energy
is a function of the ratio of the frame rotation rate to the
mean shear rate (2f/S). This is true even for those values
of Qf /8 corresponding to the “unstable regime”, where the
turbulent kinetic energy, k, and its dissipation rate, e, grow
exponentially in time. This result is contrary to the predic-
tions of the model e-equation, which in turbulence modeling
provides a standard method to transport the second turbu-
lence scale. When the e-equation is used in conjunction with
the the k-equation, P/e is predicted to be constant and in-
dependent of 2f/S in the unstable regime. Here, we show
this to be an artifact of the constant coefficients used in the
model e-equation. When the large-scale enstrophy equation
is used in place of the e-equation, structure-based turbulence
models provide excellent predictions for all one-point statis-
tics, including the Reynolds stresses and the variation of Ple
with Qf /8.

INTRODUCTION

Homogeneous shear and straining flows in rotating
frames capture the basic physics of turbomachinery flows
and are good configurations for the calibration and refine-
ment of RANS models used in CFD codes. Unfortunately
there is a surprising lack of modern, high resolution, sim-
ulations of rotated shear and straining flows, and this hin-
ders model improvement and development. Recognizing this
need, we have been conducting DNS for homogeneous shear
and straining flows in rotating frames as part of the ASCI
program at Stanford. These DNS data will be used by
modeling groups to shape and tune their models to handle
rotating turbomachinery flows.

The flow configuration of primary interest corresponds
to the shear of homogeneous turbulence in a frame rotating
about the spanwise or streamwise direction.” Turbomachin-
ery flows also involve strain dominated regions and these
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Figure 1: Flow configuration for the shear of homogeneous
turbulence in a frame rotating about the spanwise direction
(left) and about the streamwise direction (right).

can be emulated by straining homogeneous turbulence in a
rotating frame. Simulation plans anticipate both strain and
shear cases, and a single general purpose code has been built
to handle all configurations.

The discussion that follows is limited to the case of shear in a
frame rotating about the spanwise (see Fig. 1). Simulations
for the case where the frame is rotating about the streamwise
have been initiated, but will be discussed elsewhere.

DNS: CODE IMPLEMENTATION

The numerical method used to solve the governing equa-
tions for homogeneous shear flows is similar to that intro-
duced by Rogallo (1981). The governing equations are trans-
formed to a set of coordinates which deform with the mean
flow. This allows Fourier pseudo-spectral methods, with pe-
riodic boundary conditions, to be used for the representation
of the spatial variation of the flow variables. Time advance is
accomplished by a third-order Runge-Kutta method. Since
the mean imposed shear skews the computational grid with
time, periodic remeshing of the grid is needed in order to
allow the simulation to progress to large total shear where a
self-preserving regime might be expected to prevail. The pe-
riodic remeshing introduces aliasing errors that are removed
by a de-aliasing procedure included in the code. An MPI
based version of the code has been implemented in Vectoral
and ported to the ASCI Red machine.

STRUCTURE-BASED TURBULENCE MODELING
This modeling effort was initiated in the late 80’s



Reynolds (1989) with the introduction of the idea that the
Reynolds stresses, which reflect the active velocity compo-
nents, by themselves do not reveal much about the turbu-
lence structure. At the same time, we also introduced a new
structure tensor describing the dimensionality of the turbu-
lence, and suggested that this and other one-point tensors
might be used in a new approach to turbulence modeling
that we called “Structure-Based Modeling” (SBM). Over
the past decade we have developed and refined the one-
point tensor representations of turbulence structure (Kassi-
nos, Reynolds & Rogers, 2001; Reynolds & Kassinos, 1995;
Kassinos & Reynolds 1994). We have also developed a dif-
ferential structure-based model that did well in modeling
complex homogeneous and inhomogeneous flows, including
rotating pipe flow where it was shown to perform better
than other models (Poroseva, Kassinos, Langer & Reynolds,
2002). We have recently developed an algebraic modeling of
the key structure tensors in terms of local mean strain and
rotation rates and the turbulence time scale. We plan to use
this algebraic model, along with transport equations for two
appropriate turbulence scales, in a robust and widely appli-
cable engineering model that should be useful in the design
of complex rotating flow systems.

Summary of the structure tensors

A brief summary of our new structure tensors is pre-
sented here. For more detail see Kassinos et al. (2001) and
Reynolds & Kassinos (1995). The tensors are defined using
the vector stream function of the turbulence, which in turn
is defined by

u =€V Yikk=-w; Tp=0. (1)

Note that ¥’ is a local quantity that contains non-local tur-
bulence information.

The Reynolds stress tensor can be expressed as
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For homogeneous turbulence

Ri; = / E;j(k) d®k (3)

where F;;(k) is the velocity spectrum tensor. Note that if
u} = 0 everywhere, then Ry;; = 0. We have emphasized
(Kassinos et al., 2001; Kassinos & Reynolds 1994) that R;;
describes the componentality of the turbulence, but not its
dimensionality. Two-dimensional (2D) turbulence need not
be two-component (2C); it could be 1C, 2C, or 3C.

The dimensionality tensor is

Dij =V Vi, @

Like R;;, D;; is dominated by the large-scale energy-
containing turbulence. If every ¥} is independent of zy,
then Dy; = 0 and the turbulence is independent of z;. For
homogeneous turbulence

kik;
Di; = / ;23 Enn(k) dk. (5)

We see that D;; is determined by the energy distribution
along rays in k-space.

The circulicity tensor is

Fij = ‘IJ;m ‘I’;,n- (6)

For homogeneous turbulence
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where Wi;(k) is the vorticity spectrum tensor. Hence Fy;
is determined by the vorticity of the large-scale energy-
containing turbulence. If the large-scale vorticity is aligned
with the z1 axis, then Fj; = 0 except for Fi1. F;; provides
information on the large-scale circulation of the turbulence.

For homogeneous turbulence all three tensors contract to
twice the kinetic energy:

Rii=D;; = Fy = ¢ = 2. (8)

Moreover, for homogeneous turbulence these tensors are not
linearly independent; they satisfy a constitutive relationship

Rij + Dij + Fij = ¢*&;;. 9

It is convenient to normalize each of these tensors by its
trace:
rij = Rij/Rex  dij = Dij/Drx fij = Fij/Fre-
(10)
Anisotropy invariant maps, such as the one introduced by
Lumley (1978) for the Reynolds stress, can be formed for
each of the structure tensors. For examples see Kassinos &
Reynolds (1994). In terms of the normalized structure ten-
sors, the constitutive equation for homogeneous turbulence

becomes
ri; +dij + fij = 0ij- (11)

Consideration of the above suggests that a one-point second-
order turbulence model that involves only the Reynolds
stress R;; is missing important information, but that a
model involving two of the tensors would have all of the one-
point second-order information about the energy-containing
eddies. This is correct for turbulence not subjected to mean
or frame rotation. A striking confirmation of this is that the
rapid pressure—strain-rate model of Launder, Reece, and
Rodi (1975) can be deduced, including the constant that
they found empirically, by modeling the associated fourth-
rank tensor in terms of the anisotropies of r and d, with all
constants determined by analysis; for details see Kassinos
& Reynolds (1994) and Reynolds & Kassinos (1995). How-
ever, when mean or frame rotation is present, a third-rank
one-point tensor (the stropholysis) is also very important.
Kassinos et al. (2001) give its definition and discuss its
role in rotating turbulence. The differential structure-based
model used for the present comparison with DNS is based
on these ideas. Details of the model formulation are given in
Kassinos, Langer, Haire, & Reynolds (2000) and in Poroseva,
Kassinos, Langer & Reynolds (2002). The model formula-
tion described therein makes use of the standard e equation
for the transport of the second turbulence scale. In the
present study, the second turbulence scale is transported
using the large-scale enstrophy equation described next.

Large-scale enstrophy equation
In structure-based turbulence modeling, an effort is made
to have both transport equations for the turbulence scales



be firmly based. The kinetic energy equation provides a
solid foundation for the energy scale of the turbulence, but
the second scale remains a challenge. The exact equation
for the energy dissipation rate is not useful because the im-
portant terms in this equation are dominated by small-scale
turbulence, whereas € is determined by nonlinear interac-
tions of large-scale turbulence. The w equation, used in k-w
models, is completely ad hoc and has no formal fundamental
definition.

If we accept the idea that the rate of energy cascade from the
large to small scales is determined by nonlinear interactions
among the large-scale motions, then only the turbulence at
scales larger than the start of the inertial range of the energy
spectrum should contribute to the energy feeding the cas-
cade. Using a model spectrum, we find that approximately
half of the total turbulence energy is carried by these large
scales, and that the dissipation rate can be expressed as
€ = Cckd, where k and & are the kinetic energy and vortic-
ity of this large-scale motion, or alternatively as ¢ = C.k,
where k is the total turbulence kinetic energy (see Reynolds,
Langer & Kassinos, 2002).

The turbulence structure tensors (Kassinos et al., 2001) are
dominated by large-scale motions. The circulicity (see Eq.
7) relates to the large-scale enstrophy. During this last year,
we have shown that the exact large-scale enstrophy equation
provides an excellent base for a model evolution equation for
the large-scale enstrophy &2. The terms in this equation are
modeled in terms of the new large-scale structure tensors.
The details of how this is done are given in Reynolds et
al. (2002). For homogeneous high Reynolds number tur-
bulence, the resulting model of the @2-equation contains
two constants, which can be determiqed entirely by ana-
lytical reference to the asymptotic structure and decay rate
of the turbulence energy for unstrained turbulence in fixed
and rotating frames. The resulting set of equations for high
Reynolds number homogeneous turbulence is given by

dk -
E = —xk& — 21”,‘_,'Sjik (12)
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Here & is the large-scale enstrophy, S;; is the mean strain
tensor, x = 3dy; fij, and C:;2T =3/2 and C‘ZQP = 4/5 are
model constants determined by analysis as described above
and in Reynolds et al. (2002).

We have implemented the new d2-equation in the thor-
oughly tested differential structure-based model, the Q-
model (Kassinos et al, 2000; Poroseva et al., 2002). We have
found that using the &2-equation as the second turbulence
scale equation improved the predictions of the Q-model for
several cases of deformation of homogeneous turbulence. In
fact, when homogeneous turbulence is sheared in a frame
with spanwise rotation, the Q-model using the &2-equation
is in excellent agreement with the results obtained from the
DNS that we have been conducting as part of the ASCI
program at Stanford. Examples of the performance of the
Q model using the large-scale enstrophy equation (13) are
discussed next.

PRELIMINARY RESULTS FOR SPANWISE ROTATION

From analysis and legacy simulations we know that shear
flows rotated about the spanwise axis bifurcate depending on
the value of the dimensionless parameter

/s, (14)

where Qf = Q{z is the rate of frame rotation rate and
S = Ui,2 is the mean shear rate. When the frame counter
rotates relative to the rotation sense of the shear, and for
moderate values of 02 /S, the turbulent kinetic energy and
dissipation rate grow exponentially in time. For large rates
of frame counter-rotation, or when the frame co-rotates with
the shear, the turbulence tends to be suppressed by the
frame rotation. The general features of this bifurcation
are now understood, but a more detailed understanding is
needed for the calibration of turbulence models. The most
widely used data comes from the Large-Eddy Simulation
(LES) by Bardina, Ferziger & Reynolds (1983), and even
though it serves to sketch the general features of the observed
bifurcation, it falls short of providing important details. The
effect of the strong frame rotation on the large-scale struc-
ture of the turbulence also remains an open question. We
hope that results from the current DNS and modeling effort
will help clarify the physics of rotated shear flows.

For example, the evolution histories of the normalized struc-
ture tensors are shown in Figure 2 for the case Qf /S = 0.15,
which falls within the unstable regime of exponential growth.
Here the horizontal axes correspond to the dimensionless
time based on the mean shear rate S. The individual com-
ponents of each tensor are identified with labels inserted in
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Figure 2: Evolution histories of the components of (a) the
Reynolds stress tensor, (b) the dimensionality tensor and (c)
the circulicity tensor. Here 2f/S = 0.15 and all cases were
initialized with S¢®/e , = 6.8. Tensor components are nor-
malized by the corresponding tensor trace and are identified
by labels inserted in the figure. Time is non-dimensionalized
using the mean shear rate S. Shown in solid lines are the
results from a 5123 DNS carried out on ASCI Red, and in
dashed line are the predictions of the structure-based model
using the large-scale enstrophy equation.
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Figure 3: The components of (a) the normalized Reynolds
stress tensor and (b) the normalized dimensionality ten-
sor as function of ©f/S. DNS results are shown as sym-
bols while the predictions of the structure-based model are
shown as lines: ( , ®) ll-component; (-------- , )
22-component; (-------- , ¥) 33-component;(—-— , ¢) 12-
component.

the figure. The evolution histories obtained from the simu-
lations (shown in solid line) are in excellent agreement with
the predictions of the structure-based model using the @2-
equation. This level of agreement between simulation results
and model predictions are typical for all values of 0f/8 as
can be seen by looking at the equilibrium values of the tensor
components as a function of /S (see Fig. 3). Since the
dimensionless time St at which equilibrium is first reached
varies with /S, in Figure 3 we have chosen to compare
DNS results and model predictions at St = 9 for all Qf/S.
This value of St is large enough to ensure that at least an
approximate equilibrium has been reached in all cases, and
at the same time small enough to ensure that all scales of
motion were in all DNS cases well resolved by the computa-
tional box. As it can been seen in Figure 3 model predictions
are in excellent agreement with DNS results for the compo-
nents of both 7;; and d;;. From Eq. (11) follows that model
predictions for f;; must also be in good agreement with the
corresponding DNS results.

In rotated shear flows, the equilibrium state depends on the
ratio of the frame rotation rate Qf = 9{2 to the shear rate
S =Uy,. A limited range of values of n = Qf /S is marked
by exponential growth of both the turbulent kinetic energy,
k, and the dissipation rate, e. This has been known for a
while, but details of the equilibrium state of the turbulence,
such as the behavior of the ratio of the turbulent kinetic en-
ergy production to dissipation rate, P/e, remained unclear.
Virtually, all algebraic stress and Reynolds stress transport
models using the standard ¢ equation predict that, within
this range, equilibrium turbulence is marked by P/e being
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Figure 4: Equilibrium values for the of turbulent kinetic en-
ergy production to its dissipation rate P/e. DNS results are
shown as symbols and the predictions of the structure-based
model as a solid line. Predictions based on the standard €
equations are shown in dashed line.

constant and independent of n. This behavior has been re-
ported in the literature and, in the absence of DNS data
that would have helped evaluate it, has been accepted as
reflecting the correct physics. Preliminary results from the
DNS that we are currently conducting as part of the ASCI
program at Stanford show that in fact the equilibrium value
of P/¢ is a function of 7 (see Fig. 4).

Interestingly, the Q-model using the large-scale @?-equation
does predict the correct behavior for P/e with 7 (see Fig. 4),
and in addition provides excellent predictions for the evolu-
tion of all normalized structure tensors in these flows (see
Fig. 1). When = Qf /S is close to 1/4 the turbulent kinetic
energy grows exponentially, and the energy-containing struc-
tures tend to quickly fill the computational box at which
point the simulation has to be terminated. The challenge
for these most unstable cases is being able to reach an equi-
librium state before this occurs. To achieve this goal we will
have to utilize computational grids of the order of 10243 or
even bigger, as explained next.

FUTURE PLANS

The rapid growth of the energy-containing structures in
the most unstable case is reflected in the comparison of two
instantaneous fields, one obtained from a weak rotation case
(9f /S = 0.05) and the other from the most unstable case
(94 /S = 0.25), as shown in Figure 5. Shown in both cases
are semi-opaque, three-dimensional, iso-surfaces of veloc-
ity magnitude. These were obtained from simulations with
different computational-box sizes that were thinned down
to the same resolution for visualization. Both simulations
were initialized with similar fields of decaying homogeneous
isotropic turbulence having ng /e0 ~ 6.8. The field on the
top was obtained at St = 4.6 from a 2563 preliminary simu-
lation. In this case 2f /S = 0.05, the frame rotation is weak,
the turbulent kinetic energy growth is moderate, and the tur-
bulence structures, are well contained in the computational
box. In comparison, the field on the bottom was taken at
St = 4.4 from a 5123 simulation having ©2f/S = 0.25. The



Figure 5: Velocity magnitude iso-surfaces from two simula-
tions of homogeneous turbulence sheared in a rotating frame.
Shown on the top are iso-surfaces taken at St = 4.6 from a
2562 simulation for the case 2/S = 0.05. Shown on the
right are iso-surfaces at St = 4.4 from a 5123 simulation
for the most ustable case Qf/S = 0.25. Darker shades cor-
respond to low and lighter shades to high velocity. The
simulations were initialized with similar fields of decaying
homogeneous isotropic turbulence with ng / €, =6.8

level of the turbulent kinetic energy and the size of energy-
containing structures are remarkably higher in this case. In
fact, even at the relatively moderate total shear of St = 4.4,
the 512% simulation is already close to running out of com-
putational box.

This rapid growth of the energy-containing structure for val-
ues of /8 in the neighborhood 1 /4 makes it particularly
difficult to reach a self-preserving (“equilibrium”) regime
before larger eddies outgrow the computational box. This
explains the lack of DNS data points around Qf/S = 0.25
in Fig. 4. We are currently carrying out a series of 10243
simulations that we expect will allow us to reach the begin-
ning of the self-preserving regime for cases with Qf /S near
0.25.

CONCLUSION

Results from the current simulations are already pro-
viding important insights about the equilibrium state of
homogeneous turbulence that is sheared in rotating frames.
For example, these results suggest that the equilibrium value
of the ratio of the production rate to the dissipation rate
(P/¢) of the turbulent kinetic energy is a function of the ra-
tio of the frame rotation rate to the mean shear rate (2//5).
This is true even for those values of Qf /S corresponding to
the “unstable regime”, where the turbulent kinetic energy, k,
and its dissipation rate, €, grow exponentially in time. Here

we have also shown that structure-based turbulence models
using the large-scale enstrophy equation are in good agree-
ment with DNS results. This suggests that these models are
good candidates for use in turbomachinery CFD codes, and
we have initiated work aiming at a simplified two-equation
algebraic structure-based model for use in engineering codes.
We expect to be able to report our progress in this direction
in the short future.
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