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ABSTRACT

The probability density function (pdf) of a stream-
wise velocity component is studied in zero-pressure gradient
boundary layers. From analyzing the data up to Rg ~ 130600,
it was found that pdfs have self-similar profiles ranging from
yt ~ 180 to 0.049 - A+, where A is Rotta-Clauser bound-
ary layer thickness. Pdf profiles asymptote to the universal
shape very close to the Gaussian, but are positively skewed
at the core region, indicating smaller values in the tail parts.
Based on this experimental fact, the mean velocity profile is
reconsidered from the standpoint of pdf equation. The log-
law profile is expected as the mean velocity distribution.

INTRODUCTION

The probability density function of stream-wise velocity
component is studied in the zero-pressure gradient bound-
ary layers. The focus is attracted to investigate the self-
similarity of probability density functions (abbreviated as
pdf hereafter ) in the over lap region. This study was mo-
tivated by the report (Tsuji & Nakamura, 1999), in which
pdf’s profile was analyzed and the mean velocity distribution
wag discussed. A logarithmic velocity profile was derived
from pdf equation subject to the invariant assumption of
pdf, which means that pdf shape becomes self-similar in the
over-lap region, and a few empirical relations.

In the TSFP-1 (1999 , Santa barbara) the basic idea was
introduced and its efficiency was confirmed in low-Reynolds
number turbulent boundary layers (Tsuji et al., 1999). The
idea was extended in the case of rough-wall boundary lay-
ers in TSFP-2 (2001 , Stockholm). The over lap region in
smooth and rough wall boundary layers were compared with
each other from the view point of pdf’s profiles (Tsuji et
al,, 2001). In the course of above researches, as the next
step, we are interested in pdfs in high-Reynolds number flow.
So, the first purpose in this paper is to check the invariant
assumption in high-Reynolds number turbulent boundary
layers (3000 < Rg < 13000 ) measured in MTL wind-tunnel
at KTH. Second, we remark the recent experiments regard-
ing the mean velocity profiles in high-Reynolds number flow
(Osterlund, 1999; Osterlund et al., 2000). We suggest that
the log-law profile is appropriate as a universal velocity dis-
tribution in the over-lap region within the framework of pdf
equation.

KULLBACK-LEIBLER DIVERGENCE

We will review briefly the Kullback-Leibler divergence
(abbreviated as K.L. divergence hereafter) for convenience.
Its detailed explanation is described in the reference (Amari,
1985). The statistical model S = {p(z,£)} parametrized by
¢ is defined, where z is a random variable belonging to a sam-
ple space X, and p(z,£) is the probability density function.
Here, £ is a real n-dimensional parameter £ = (¢1,£2,-..,£7)
belonging to some open subset = of the n-dimensional real
space R™. When p(z, £) is sufficiently smooth in £, it is nat-
ural to introduce in a statistical model S the structure of an
n-dimensional manifold, where £ plays the role of a coordi-
nate system. When the metric tensor is introduced for each
¢, Riemanian space is constructed. The K.L. divergence is a
generalization of the Riemanian metric in space S, which is
the most important quantity about the differential geometry
in statistics.

The meaning of the K.L. divergence is explained con-
cretely as follows. Let us assume that a discrete prob-
ability distribution {p{ : i = 1,2,---,n} with p¢ # 0
over a sample set is given. If this probability changed to
{pi : i~ 1,2,--+,n} by a new information,

b — b; = In(p:/p?), (1)

is defined as the information change. As b; (= —Inp;) is the
the knowledge with respect to the event ¢, the decrease of
p; describes the increase of the knowledge. On average, the
statistical weight of the result 7 is determined by the new
probability p;, and we obtain the mean value of Eq. (1) as,

n
Kp,p®) =Y piln B, 2
(p,p") ;P: 2 2
which is the definition of the K.L. divergence and is also
called the information gain. K(p,p®) > 0 is zero for only
p = po ,therefore, it is considered to indicate the difference
between {p;} and {p0}.

PROBABILITY SHAPE IN OVERLAP REGION

Kullback Leibler divergence (KLD) was used to evaluate
the shape of pdf qualitatively. This measure is defined in
this data analysis as follows,

D(PIQ) = Y _ P(si)log. (P(s:)/Q(s:)),  (3)
{s}
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where P(s) and Q(s), {s} = {s1,s2,-'}, are discrete
probability distributions. KLD has a non-negative value
for any P(s) and Q(s), and it is zero only when P(s) is
exactly equal to Q(s). In this analysis, Q(s) is set to be
Gaussian profile and P(s) is set to the pdf of velocity fluc-
tuation, Py(s), measured at location y from the wall. The
typical example of mean velocity and KLD are plotted in
Fig. 1. The solid symbols indicate the log-region suggested
by Osterlund (1999). The solid line is the log-law profile,
Ut = (1/k) -log.y* + B with x = 0.38 and B = 4.1. It
is clear that there is a constant KL-divergence region. This
means that P, does not change. Its beginning point is ex-
pressed as yj' and its end is y;" , respectively.
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Figure 1: Typical example of mean velocity profile and KL-
divergence distribution. The solid circles indicate the log-law
region suggested by Osterlund et al. (1999): 200 < yt+ <
0.15 - §+. KL-divergence is defined by Eq, (3) where P,
indicates the probability at location y, and Pg is Gaussian
profile. Solid circles in the bottom graph indicate the con-
stant KL-divergence region. The beginning and end point
are expressed as y and yJ, respectively. y,',* is the point of
mimum KL-divergenve.

Both y& and yZ are plotted in Fig. 2. The former is
y;" ~ 180 but the latter increases as a function of Reynolds
number based on momentum thickness, which is located out-
side of y = 0.15.4. Analyzing the KTH database, it was
found that pdfs have self-similar profiles in the extent from
y+ =~ 200 to 0.3 - §, where § is a boundary layer thickness.
Pdf profiles asymptote to the universal shape very close to
the Gaussian, but are positively skewed at the core region,
indicating smaller values in the tail parts (Lindgren et al.,
2002).
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Figure 2: The beginning and the end points are plotted as
a function of Reynolds number; Ry = Upf/v.

MEAN VELOCITY PROFILE

The detailed explanation is omitted here (Tsuji & Naka-
mura, 1999), however the following rational expansion was
used to interpolate the turbulence intensity distribution in
the inner region.

wf=a+Bb@t -+ Bt -+ (4)

The coeflicient a means a = limy+ oo ut and B; represent
the decay of u,. < is an open parameter but is a small
quantity. In this analysis v is set at 5, and the rational
expansion Eq. (4) is valid from y* ~ 20 to yT. The outer
end y; is empirically evaluated as 0.15- 6+ < yFf < 0.2
§%. We have derived the log-law profile from pdf equation
subject to Eq. (4) (Tsuji & Nakamura, 1999).

2af2 + B2
Ut =0 {aﬂlloglo(y+_7)+ _‘_xﬁz._’yﬂ_l.g_...} +B.

y+ ——

(8)
Sufficiently far from the wall, the leading term is dominant,
and Eq. (5) represents the logarithmic profile. At close
to the wall, the contribution from the second term should
be considered. The coefficient C; is obtained by the infor-
mation of — (uv) /u?, and it is set at 0.2 in this analysis.
o is scaled like o = 0.33 - R3%! and §; = 91.8. Ry,
Therefore, within the experimental accuracy, the product
of a and By is constant independent of the Reynolds num-
ber, that is, af; =~ 30.3. The slope of logarithmic profile
is computed as Ciaf; = 6.06, or Kdrmdan constant, x, is
rewritten as log, 10/(C1aB1), thus we have x = 0.379. On
the additive constant B, the theoretical procedure ascertains
that it depends on the Reynolds number but approaches the
asymptotic value.

Logarithmic profile is expected in the intersection of
above two regions; [y?’,y;"] n 20, v = [yj',y;"]. Using
the least square approximation, the constant x and B are
uniquely determined within [y}, y7]. In Fig. 3 they are plot-
ted as a function of Reynolds number. We have « ~ 0.38
and B =~ 4.1 for 5000 < Rg. These results are consistent
with ones obtained by Osterlund et al. (2000), who analyzed
carefully the mean velocity gradient, but here we thought of
this problem in a different way. It is noticed two different
approaches indicate the same results.
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Figure 3: Coefficient x and B are obtained by fitting U+ =
(1/8)Iny™ + B to the experimental data within [y, ;]
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